Существование функции со знакопостоянной производной для неавтономных систем дифференциальных уравнений

Для неавтономных систем дифференциальных уравнений доказана теорема о существовании функции, имеющей знакопостоянную производную в силу системы. Построенная функция является дифференцируемой, допускает бесконечно малый высший предел и является периодической, если правые части являются периодическими...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Механика твердого тела
Datum:2011
Hauptverfasser: Ковалев, А.М., Неспирный, В.Н., Суйков, А.С.
Format: Artikel
Sprache:Russian
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2011
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/71575
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Существование функции со знакопостоянной производной для неавтономных систем дифференциальных уравнений / А.М. Ковалев, В.Н. Неспирный, А.С. Суйков // Механика твердого тела: Межвед. сб. науч. тр. — 2011. — Вип 41. — С. 3-10. — Бібліогр.: 8 назв. — рос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine