Малые колебания пластины Кирхгофа с двумерным управлением
Построена модель механической системы, которая состоит из твердого тела и тонкой упругой пластины, а также предложена схема сведения уравнений движения с частными производными к бесконечной системе обыкновенных дифференциальных уравнений. Получены условия управляемости модели в конечномерном фазовом...
Збережено в:
| Опубліковано в: : | Механика твердого тела |
|---|---|
| Дата: | 2011 |
| Автори: | , |
| Формат: | Стаття |
| Мова: | Russian |
| Опубліковано: |
Інститут прикладної математики і механіки НАН України
2011
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/71592 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Малые колебания пластины Кирхгофа с двумерным управлением / А.Л. Зуев, Ю.В. Новикова // Механика твердого тела: Межвед. сб. науч. тр. — 2011. — Вип 41. — С. 187-198. — Бібліогр.: 5 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | Построена модель механической системы, которая состоит из твердого тела и тонкой упругой пластины, а также предложена схема сведения уравнений движения с частными производными к бесконечной системе обыкновенных дифференциальных уравнений. Получены условия управляемости модели в конечномерном фазовом пространстве, а также условия спектральной управляемости.
Побудовано модель механiчної системи, що складається з твердого тiла та тонкої пружної пластини, а також запропоновано схему зведення рiвнянь руху з частинними похiдними до нескiнченної системи звичайних диференцiальних рiвнянь. Одержано умови керованостi моделi у скiнченновимiрному фазовому просторi, а також умови спектральної керованостi.
In this paper, a mechanical system model consisting of a rigid body and thin elastic plate is constructed. A reduction scheme that allows transforming the equations of motion with partial derivatives to an infinite system of ordinary differential equations is proposed. Controllability conditions are obtained for a model in a finite dimensional state space. Conditions of spectral controllability are studied as well.
|
|---|---|
| ISSN: | 0321-1975 |