Устойчивость в импульсных системах с марковскими возмущениями в схеме усреднений. 2. Принцип усреднения для импульсных марковских систем и анализ устойчивости по усредненному уравнению

Використано метод малого параметра Боголюбова - Митропольського для вивчення поведінки стохастичних диференціальних систем під час дослідження відповідних властивостей розв'язків усереднених систем.Для стохастичної динамічної системи з малим параметром доведено рівномірну обмеженість p-го момен...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Кибернетика и системный анализ
Datum:2011
Hauptverfasser: Царьков, Е.Ф., Ясинский, В.К., Малык, И.В.
Format: Artikel
Sprache:Russian
Veröffentlicht: Інститут кібернетики ім. В.М. Глушкова НАН України 2011
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/72201
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Устойчивость в импульсных системах с марковскими возмущениями в схеме усреднений. 2. Принцип усреднения для импульсных марковских систем и анализ устойчивости по усредненному уравнению / Е.Ф. Царьков, В.К. Ясинский, И.В. Малык // Кибернетика и системный анализ. — 2011. — № 1. — С. 50-61. — Бібліогр.: 24 назв. — рос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:Використано метод малого параметра Боголюбова - Митропольського для вивчення поведінки стохастичних диференціальних систем під час дослідження відповідних властивостей розв'язків усереднених систем.Для стохастичної динамічної системи з малим параметром доведено рівномірну обмеженість p-го моменту розв'язку р >1), слабку збіжність розв'язку системи до розв'язку стохастичного диференціального рівняння Iто, слабку збіжність нормованих відхилень. Проаналізовано стійкість лінійних систем з малим параметром і марковськими збуреннями.Використано метод малого параметра Боголюбова - Митропольського для вивчення поведінки стохастичних диференціальних систем у процесі дослідження відповідних властивостей розв'язків усереднених систем.