Об асимптотических свойствах решений дифференциально-функциональных уравнений с линейно преобразованным аргументом
Встановлено нові властивості розв'язків диференціально-функціонального рівняння x'(t) = ax(t) + bx(t − r) + cx'(t − r) + px(qt) + hx'(qt) + f1(x(t), x(t − r), x'(t − r), x(qt), x'(qt)) в околі особливої точки t = +∞. We find new properties of solutions of the differenti...
Gespeichert in:
| Datum: | 2007 |
|---|---|
| Hauptverfasser: | , |
| Format: | Artikel |
| Sprache: | Russian |
| Veröffentlicht: |
Інститут математики НАН України
2007
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/7248 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Об асимптотических свойствах решений дифференциально-функциональных уравнений с линейно преобразованным аргументом / Г.П. Пелюх, Д.В. Бельский // Нелінійні коливання. — 2007. — Т. 10, № 1. — С. 144-160. — Бібліогр.: 11 назв. — рос. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Zusammenfassung: | Встановлено нові властивості розв'язків диференціально-функціонального рівняння x'(t) = ax(t) + bx(t − r) + cx'(t − r) + px(qt) + hx'(qt) + f1(x(t), x(t − r), x'(t − r), x(qt), x'(qt)) в околі особливої точки t = +∞.
We find new properties of solutions of the differential-functional equation x'(t) = ax(t) + bx(t − r) + cx'(t − r) + px(qt) + hx'(qt) + f1(x(t), x(t − r), x'(t − r), x(qt), x'(qt)) in a neighbourhood of the singular point t = +∞.
|
|---|---|
| ISSN: | 1562-3076 |