Мультиагентная адаптация гибридного генетического алгоритма для обучения нейросетей

Предложен агентно-ориентированный подход адаптации формирования структуры и обучения нейросети к обучающей выборке. Для адаптации структур нейронных сетей используется генетический алгоритм с вещественным кодированием хромосом. Обучение нейросетей выполняется гибридным генетическим алгоритмом с г...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2008
Hauptverfasser: Олейник, Д.В., Шинкаренко, В.И.
Format: Artikel
Sprache:Russian
Veröffentlicht: Інститут проблем штучного інтелекту МОН України та НАН України 2008
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/7550
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Мультиагентная адаптация гибридного генетического алгоритма для обучения нейросетей / Д.В. Олейник, В.И. Шинкаренко // Штучний інтелект. — 2008. — № 4. — С. 463-470. — Бібліогр.: 14 назв. — рос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:Предложен агентно-ориентированный подход адаптации формирования структуры и обучения нейросети к обучающей выборке. Для адаптации структур нейронных сетей используется генетический алгоритм с вещественным кодированием хромосом. Обучение нейросетей выполняется гибридным генетическим алгоритмом с градиентным дообучением лидера. Для подбора параметров обучения используются интеллектуальные агенты, система знаний которых построена по принципу «начальник – подчиненный». Построение знаний осуществляется методом кластеризации. Организация вычислительного процесса позволяет выполнять распределённые вычисления в гетерогенных локальных сетях. Запропонований агентно-орієнтований підхід адаптації формування структури та навчання нейромережі до навчальної вибірки. Для адаптації структур нейронних мереж використовується генетичний алгоритм з кодуванням хромосом в дійсних числах. Навчання нейромереж відбувається гібридним генетичним алгоритмом з градієнтним донавчанням лідера. Для підбору параметрів навчання використовуються інтелектуальні агенти, система знань яких побудована по принципу «начальник – підлеглий». Побудова знань відбувається методом кластеризації. Организація обчислювального процесу дозволяє виконувати розподіленні обчислення в гетерогенних локальних мережах. The agent-oriented method for adaptation of forming and learning of neuronet to learning selection is suggested. Genetic algorithm with real genetic coding is used for adaptation of neuronet structure. Neuronets learning is performing by means of hybrid genetic algorithm with gradient leader relearning. The intellectual agents are used for obtaining of learning parameters. Their knowledge system is based on “chief-inferior”. Knowledge building is performed by means of clusterization. Organization of calculating process allows to perform distributed calculations in heterogeneous local area networks.
ISSN:1561-5359