Про спеціальні квазіфільтри в мультиплікативному моноїді натуральних чисел
Вводяться поняття σ-скруту в категорії S-полігонів над моноїдом S та відповідного йому σ-квазі-фільтра в моноїді S. Описано ріссові конґруенції на моноїді натуральних чисел з операцією множення. На основі цього опису побудовано деякі класи σ-квазі-фільтрів в моноїді (N, •). Основні результати статті...
Збережено в:
| Дата: | 2008 |
|---|---|
| Автор: | |
| Формат: | Стаття |
| Мова: | Ukrainian |
| Опубліковано: |
Інститут прикладних проблем механіки і математики ім. Я.С. Підстригача НАН України
2008
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/7693 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Про спеціальні квазі-фільтри в мультиплікативному моноїді натуральних чисел / Р.М. Олійник // Приклад. пробл. механіки і математики. — 2008. — Вип. 6. — С. 80-87. — Бібліогр.: 10 назв. — укp. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | Вводяться поняття σ-скруту в категорії S-полігонів над моноїдом S та відповідного йому σ-квазі-фільтра в моноїді S. Описано ріссові конґруенції на моноїді натуральних чисел з операцією множення. На основі цього опису побудовано деякі класи σ-квазі-фільтрів в моноїді (N, •). Основні результати статті містяться в теоремах 2, 3 і 4.
Вводится понятие σ-скручения в категории S-полигонов над моноидов S и соответствующего ему σ-квази-фильтра в моноиде S. Описаны риссовы конгруенцииі на мультипликативном моноиде натуральных чисел. На основе этого описания построены некоторые классы σ-квази-фильтров в моноиде (N, •). Основные результаты статьи содержатся в теоремах 2,3 и 4.
In this paper, we introduce the concept of s-torsion theory in the category S -system to monoid S and his σ-quasi-filter on a monoid S . We described Riesz congruencies on the multiplication monoid to the natural numbers. On the base of this description we established some classes of σ-quasi-filter on a monoid (N, •). The main results of this paper are in the theorems 2, 3 and 4.
|
|---|---|
| ISSN: | 1810-3022 |