Узагальнений стабільний ранг кілець

Вводиться поняття узагальненого стабільного рангу кілець. Обчислено узагальнений стабільний ранг кільця матриць над кільцем елементарних дільників і кільця матриць над одинично регулярним кільцем. Доводиться, що над кільцем з елементарною редукцією матриць довільна квадратна матриця порядку n є сумо...

Full description

Saved in:
Bibliographic Details
Date:2008
Main Author: Білявська, С.І.
Format: Article
Language:Ukrainian
Published: Інститут прикладних проблем механіки і математики ім. Я.С. Підстригача НАН України 2008
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/7694
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Узагальнений стабільний ранг кілець / С.І. Білявська // Приклад. пробл. механіки і математики. — 2008. — Вип. 6. — С. 88-90. — Бібліогр.: 8 назв. — укp.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:Вводиться поняття узагальненого стабільного рангу кілець. Обчислено узагальнений стабільний ранг кільця матриць над кільцем елементарних дільників і кільця матриць над одинично регулярним кільцем. Доводиться, що над кільцем з елементарною редукцією матриць довільна квадратна матриця порядку n є сумою двох матриць з групи GEn(R). Вводится понятие обобщенного стабильного ранга колец. Вычислены обобщенный стабильный ранг кольца матриц над кольцом элементарных делителей и кольца матриц над единично регулярным кольцом. Доказано, что над кольцом с элементарной редукцией матриц произвольная квадратная матрица порядка n является сумой двух матриц из группы GEn(R). It is introduced the notion of generalized stable rank of rings. Also calculated generalized stable rank of matrice ring over an elementary divisor ring and matrice ring over unit regular ring. It is proved that over ring with elementary reduce of matrices every square n-th order matrice is a sum of two matrices, which belong to group GEn(R).
ISSN:1810-3022