Умови нестійкості та можливі біфуркації у моделі Брюселятора з дробовими похідними

Досліджено динамічну модель Брюселятора з часовими дробовими похідними. Аналітично проведено спектральний аналіз і показано можливість реалізації різних типів біфуркації, включаючи новий тип комплексної біфуркації, для цієї моделі. За допомогою комп'ютерного моделювання підтверджено результати...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2008
Автори: Дацко, Б.Й., Мелешко, В.В.
Формат: Стаття
Мова:Ukrainian
Опубліковано: Інститут прикладних проблем механіки і математики ім. Я.С. Підстригача НАН України 2008
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/7701
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Умови нестійкості та можливі біфуркації у моделі Брюселятора з дробовими похідними / Б.Й. Дацко, В.В. Мелешко // Приклад. пробл. механіки і математики. — 2008. — Вип. 6. — С. 124-131. — Бібліогр.: 35 назв. — укp.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Досліджено динамічну модель Брюселятора з часовими дробовими похідними. Аналітично проведено спектральний аналіз і показано можливість реалізації різних типів біфуркації, включаючи новий тип комплексної біфуркації, для цієї моделі. За допомогою комп'ютерного моделювання підтверджено результати лінійної теорії і продемонстровано особливості різного типу біфуркацій. Показано, що така система може бути нестійкою в широкому діапазоні зміни порядку дробових похідних. Виявлено, що внаслідок нестійкості в системі можуть виникати якісно різні типи коливних розв'язків. Исследована динамическая модель Брюсселятора с временными дробными производными. Аналитически проведен спектральный анализ и показана возможность реализации разных типов бифуркации, включая новый тип комплексной бифуркации, для этой модели. С помощью компьютерного моделирования подтверждены результаты линейной теории и продемонстрированы особенности различного типа бифуркаций. Показано, что такая система может быть неустойчивой в широком диапазоне изменения порядка дробных производных. Обнаружено, что в результате этой неустойчивости в системе могут возникать качественно различные типы колебательных решений. We investigate a Brusselator dynamical system with time fractional derivatives. Spectral analysis is fulfilled analytically for any values of derivative orders. It is shown that such a system could be unstable in wide interval of system parameters. Different types of oscillations appear as a result of this instability. Computer simulation of the typical oscillations demonstrating the observed effects are performed.
ISSN:1810-3022