Characteristics of edge plasma turbulence in spontaneous change of confinement mode in the URAGAN-3M torsatron
It is shown that in the Uragan-3M torsatron under conditions of spontaneous change of confinement mode caused by formation of an internal transport barrier, a layer with the E×B velocity shear appears at the boundary of confinement region. Appreciable changes of the edge microturbulence characterist...
Saved in:
| Published in: | Вопросы атомной науки и техники |
|---|---|
| Date: | 2005 |
| Main Authors: | , , , , , , , , , , |
| Format: | Article |
| Language: | English |
| Published: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2005
|
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/78419 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Characteristics of edge plasma turbulence in spontaneous change of confinement mode in the URAGAN-3M torsatron / E.L. Sorokovoy, L.I. Grigor’eva, V.V. Chechkin, Ye.D. Volkov, Ye.L. Sorokovoy, P.Ya. Burchenko, S.A. Tsybenko, A.V. Lozin, A.P. Litvinov, S. Masuzaki, K. Yamazaki // Вопросы атомной науки и техники. — 2005. — № 1. — С. 21-23. — Бібліогр.: 5 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-78419 |
|---|---|
| record_format |
dspace |
| spelling |
Sorokovoy, E.L. Grigor’eva, L.I. Chechkin, V.V. Volkov, Ye.D. Sorokovoy, Ye.L. Burchenko, P.Ya. Tsybenko, S.A. Lozin, A.V. Litvinov, A.P. Masuzaki, S. Yamazaki, K. 2015-03-16T19:47:13Z 2015-03-16T19:47:13Z 2005 Characteristics of edge plasma turbulence in spontaneous change of confinement mode in the URAGAN-3M torsatron / E.L. Sorokovoy, L.I. Grigor’eva, V.V. Chechkin, Ye.D. Volkov, Ye.L. Sorokovoy, P.Ya. Burchenko, S.A. Tsybenko, A.V. Lozin, A.P. Litvinov, S. Masuzaki, K. Yamazaki // Вопросы атомной науки и техники. — 2005. — № 1. — С. 21-23. — Бібліогр.: 5 назв. — англ. 1562-6016 PACS: 52.35.Ra; 52.55.Hc https://nasplib.isofts.kiev.ua/handle/123456789/78419 It is shown that in the Uragan-3M torsatron under conditions of spontaneous change of confinement mode caused by formation of an internal transport barrier, a layer with the E×B velocity shear appears at the boundary of confinement region. Appreciable changes of the edge microturbulence characteristics and turbulence-induced particle flux in the vicinity of this layer evidence a formation of the edge transport barrier as well. В торсатроні У-3М при зміні режиму утримання, викликаній створенням внутрішнього транспортного бар’єра, біля границі плазми виникає шар з шіром швидкості Е×В. Відповідні зміни характеристик дрібномасштабної турбулентності поблизу цього шару та викликаного турбулентністю радіального потоку частинок свідчать про створення також і крайового транспортного бар’єра. В торсатроне У-3М при изменении режима удержания плазмы, вызванном образованием внутреннего транспортного барьера, вблизи границы плазмы появляется слой с широм скорости Е×В. Соответствующие изменения характеристик мелко-масштабной турбулентности в окрестности этого слоя и вызванного турбулентностью радиального потока частиц, свидетельствуют об образовании также и краевого транспортного барьера. en Національний науковий центр «Харківський фізико-технічний інститут» НАН України Вопросы атомной науки и техники Magnetic confinement Characteristics of edge plasma turbulence in spontaneous change of confinement mode in the URAGAN-3M torsatron Характеристики турбулентності крайової плазми при спонтанній зміні режиму утримання в торсатроні «УРАГАН-3М» Характеристики турбулентности краевой плазмы при спонтанном изменении режима удержания в торсатроне «УРАГАН-3М» Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Characteristics of edge plasma turbulence in spontaneous change of confinement mode in the URAGAN-3M torsatron |
| spellingShingle |
Characteristics of edge plasma turbulence in spontaneous change of confinement mode in the URAGAN-3M torsatron Sorokovoy, E.L. Grigor’eva, L.I. Chechkin, V.V. Volkov, Ye.D. Sorokovoy, Ye.L. Burchenko, P.Ya. Tsybenko, S.A. Lozin, A.V. Litvinov, A.P. Masuzaki, S. Yamazaki, K. Magnetic confinement |
| title_short |
Characteristics of edge plasma turbulence in spontaneous change of confinement mode in the URAGAN-3M torsatron |
| title_full |
Characteristics of edge plasma turbulence in spontaneous change of confinement mode in the URAGAN-3M torsatron |
| title_fullStr |
Characteristics of edge plasma turbulence in spontaneous change of confinement mode in the URAGAN-3M torsatron |
| title_full_unstemmed |
Characteristics of edge plasma turbulence in spontaneous change of confinement mode in the URAGAN-3M torsatron |
| title_sort |
characteristics of edge plasma turbulence in spontaneous change of confinement mode in the uragan-3m torsatron |
| author |
Sorokovoy, E.L. Grigor’eva, L.I. Chechkin, V.V. Volkov, Ye.D. Sorokovoy, Ye.L. Burchenko, P.Ya. Tsybenko, S.A. Lozin, A.V. Litvinov, A.P. Masuzaki, S. Yamazaki, K. |
| author_facet |
Sorokovoy, E.L. Grigor’eva, L.I. Chechkin, V.V. Volkov, Ye.D. Sorokovoy, Ye.L. Burchenko, P.Ya. Tsybenko, S.A. Lozin, A.V. Litvinov, A.P. Masuzaki, S. Yamazaki, K. |
| topic |
Magnetic confinement |
| topic_facet |
Magnetic confinement |
| publishDate |
2005 |
| language |
English |
| container_title |
Вопросы атомной науки и техники |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| format |
Article |
| title_alt |
Характеристики турбулентності крайової плазми при спонтанній зміні режиму утримання в торсатроні «УРАГАН-3М» Характеристики турбулентности краевой плазмы при спонтанном изменении режима удержания в торсатроне «УРАГАН-3М» |
| description |
It is shown that in the Uragan-3M torsatron under conditions of spontaneous change of confinement mode caused by formation of an internal transport barrier, a layer with the E×B velocity shear appears at the boundary of confinement region. Appreciable changes of the edge microturbulence characteristics and turbulence-induced particle flux in the vicinity of this layer evidence a formation of the edge transport barrier as well.
В торсатроні У-3М при зміні режиму утримання, викликаній створенням внутрішнього транспортного бар’єра, біля границі плазми виникає шар з шіром швидкості Е×В. Відповідні зміни характеристик дрібномасштабної турбулентності поблизу цього шару та викликаного турбулентністю радіального потоку частинок свідчать про створення також і крайового транспортного бар’єра.
В торсатроне У-3М при изменении режима удержания плазмы, вызванном образованием внутреннего транспортного барьера, вблизи границы плазмы появляется слой с широм скорости Е×В. Соответствующие изменения характеристик мелко-масштабной турбулентности в окрестности этого слоя и вызванного турбулентностью радиального потока частиц, свидетельствуют об образовании также и краевого транспортного барьера.
|
| issn |
1562-6016 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/78419 |
| citation_txt |
Characteristics of edge plasma turbulence in spontaneous change of confinement mode in the URAGAN-3M torsatron / E.L. Sorokovoy, L.I. Grigor’eva, V.V. Chechkin, Ye.D. Volkov, Ye.L. Sorokovoy, P.Ya. Burchenko, S.A. Tsybenko, A.V. Lozin, A.P. Litvinov, S. Masuzaki, K. Yamazaki // Вопросы атомной науки и техники. — 2005. — № 1. — С. 21-23. — Бібліогр.: 5 назв. — англ. |
| work_keys_str_mv |
AT sorokovoyel characteristicsofedgeplasmaturbulenceinspontaneouschangeofconfinementmodeintheuragan3mtorsatron AT grigorevali characteristicsofedgeplasmaturbulenceinspontaneouschangeofconfinementmodeintheuragan3mtorsatron AT chechkinvv characteristicsofedgeplasmaturbulenceinspontaneouschangeofconfinementmodeintheuragan3mtorsatron AT volkovyed characteristicsofedgeplasmaturbulenceinspontaneouschangeofconfinementmodeintheuragan3mtorsatron AT sorokovoyyel characteristicsofedgeplasmaturbulenceinspontaneouschangeofconfinementmodeintheuragan3mtorsatron AT burchenkopya characteristicsofedgeplasmaturbulenceinspontaneouschangeofconfinementmodeintheuragan3mtorsatron AT tsybenkosa characteristicsofedgeplasmaturbulenceinspontaneouschangeofconfinementmodeintheuragan3mtorsatron AT lozinav characteristicsofedgeplasmaturbulenceinspontaneouschangeofconfinementmodeintheuragan3mtorsatron AT litvinovap characteristicsofedgeplasmaturbulenceinspontaneouschangeofconfinementmodeintheuragan3mtorsatron AT masuzakis characteristicsofedgeplasmaturbulenceinspontaneouschangeofconfinementmodeintheuragan3mtorsatron AT yamazakik characteristicsofedgeplasmaturbulenceinspontaneouschangeofconfinementmodeintheuragan3mtorsatron AT sorokovoyel harakteristikiturbulentnostíkraiovoíplazmiprispontanníizmínírežimuutrimannâvtorsatroníuragan3m AT grigorevali harakteristikiturbulentnostíkraiovoíplazmiprispontanníizmínírežimuutrimannâvtorsatroníuragan3m AT chechkinvv harakteristikiturbulentnostíkraiovoíplazmiprispontanníizmínírežimuutrimannâvtorsatroníuragan3m AT volkovyed harakteristikiturbulentnostíkraiovoíplazmiprispontanníizmínírežimuutrimannâvtorsatroníuragan3m AT sorokovoyyel harakteristikiturbulentnostíkraiovoíplazmiprispontanníizmínírežimuutrimannâvtorsatroníuragan3m AT burchenkopya harakteristikiturbulentnostíkraiovoíplazmiprispontanníizmínírežimuutrimannâvtorsatroníuragan3m AT tsybenkosa harakteristikiturbulentnostíkraiovoíplazmiprispontanníizmínírežimuutrimannâvtorsatroníuragan3m AT lozinav harakteristikiturbulentnostíkraiovoíplazmiprispontanníizmínírežimuutrimannâvtorsatroníuragan3m AT litvinovap harakteristikiturbulentnostíkraiovoíplazmiprispontanníizmínírežimuutrimannâvtorsatroníuragan3m AT masuzakis harakteristikiturbulentnostíkraiovoíplazmiprispontanníizmínírežimuutrimannâvtorsatroníuragan3m AT yamazakik harakteristikiturbulentnostíkraiovoíplazmiprispontanníizmínírežimuutrimannâvtorsatroníuragan3m AT sorokovoyel harakteristikiturbulentnostikraevoiplazmyprispontannomizmeneniirežimauderžaniâvtorsatroneuragan3m AT grigorevali harakteristikiturbulentnostikraevoiplazmyprispontannomizmeneniirežimauderžaniâvtorsatroneuragan3m AT chechkinvv harakteristikiturbulentnostikraevoiplazmyprispontannomizmeneniirežimauderžaniâvtorsatroneuragan3m AT volkovyed harakteristikiturbulentnostikraevoiplazmyprispontannomizmeneniirežimauderžaniâvtorsatroneuragan3m AT sorokovoyyel harakteristikiturbulentnostikraevoiplazmyprispontannomizmeneniirežimauderžaniâvtorsatroneuragan3m AT burchenkopya harakteristikiturbulentnostikraevoiplazmyprispontannomizmeneniirežimauderžaniâvtorsatroneuragan3m AT tsybenkosa harakteristikiturbulentnostikraevoiplazmyprispontannomizmeneniirežimauderžaniâvtorsatroneuragan3m AT lozinav harakteristikiturbulentnostikraevoiplazmyprispontannomizmeneniirežimauderžaniâvtorsatroneuragan3m AT litvinovap harakteristikiturbulentnostikraevoiplazmyprispontannomizmeneniirežimauderžaniâvtorsatroneuragan3m AT masuzakis harakteristikiturbulentnostikraevoiplazmyprispontannomizmeneniirežimauderžaniâvtorsatroneuragan3m AT yamazakik harakteristikiturbulentnostikraevoiplazmyprispontannomizmeneniirežimauderžaniâvtorsatroneuragan3m |
| first_indexed |
2025-11-26T17:29:25Z |
| last_indexed |
2025-11-26T17:29:25Z |
| _version_ |
1850765453228507136 |
| fulltext |
CHARACTERISTICS OF EDGE PLASMA TURBULENCE
IN SPONTANEOUS CHANGE OF CONFINEMENT MODE
IN THE URAGAN-3M TORSATRON
E.L. Sorokovoy , L.I. Grigor’eva,V.V. Chechkin, Ye.D. Volkov, Ye.L. Sorokovoy,
P.Ya. Burchenko, S.A. Tsybenko, A.V. Lozin, A.P. Litvinov, S. Masuzaki∗, K. Yamazaki∗
Institute of Plasma Physics, National Science Center
“Kharkov Institute of Physics and Technology”, Kharkov, Ukraine;
∗National Institute for Fusion Science, Toki, Japan
It is shown that in the Uragan-3M torsatron under conditions of spontaneous change of confinement mode caused
by formation of an internal transport barrier, a layer with the E×B velocity shear appears at the boundary of confinement
region. Appreciable changes of the edge microturbulence characteristics and turbulence-induced particle flux in the
vicinity of this layer evidence a formation of the edge transport barrier as well.
PACS: 52.35.Ra; 52.55.Hc
1. INTRODUCTION
In the Uragan-3M (U-3M) torsatron with an open
helical divertor (l = 3, m = 9, Ro = 1 м, a ≈ 0,12 м, Вφ =
0,7 Т, ι( a )/2π ≈ 0,3) a spontaneous transition to an
improved confinement state (below – “transition”) is
observed under conditions of plasma production and
heating by RF fields in the ω ≤ ωci range of frequencies
[1,2]. This transition is related to an internal transport
barrier (ITB) formation in the layer near the τ = 1/4
rational magnetic surface [2], this having been confirmed
by the form of electron density and temperature profiles
as well as the existence of an E×B velocity shear in the
layer considered.
It has been demonstrated in [3] that the transition is
accompanied by substantial changes in the diverted
plasma flow (DPF) magnitude. At the initial phase of
these changes being essentially non-steady-state, a
reduction of all the PDF components in the spacings
between the helical coils is observed, this being an
evidence of plasma confinement improvement. The initial
phase is terminated by an enhanced escape of thermal and
suprathermal ions from the confinement volume, that is
accompanied by a rise of some DPF components, thus
indicating a certain degradation of confinement.
It is shown in the presented paper that parallel with
the ITB formation a layer with the E×B velocity shear is
also formed at the plasma boundary in U-3M. In the
vicinity of this layer substantial changes of the
electrostatic microturbulence and assotiated radial particle
flux are observed, that indicate an edge transport barrier
(ETB) also to be formed.
2. EXPERIMENTAL CONDITIONS
The investigations were carried out in a hydrogen
plasma with the line-averaged electron density
en ~ 1018 m-3 and electron temperature Te(0) ≈ 500 eV. To
study the low-frequency (1-300 kHz) electrostatic
turbulence in the edge plasma, an array of 4 movable
probes was used. The molybdenum φ = 0.5 mm/l = 3 mm
probe tips 1, 2, 3, 4 were arranged in the angles of a
square 3 mm on side (see inset in Fig. 1) and orientated
with the major radius. The ion saturation current (ISC)
fluctuations, sI~ , were recorded by the probes 1 and 2.
Also, the probe 2 measured equilibrium components of
ISC, Is, and floating potential (FP), Vf, and was used for
VI-characteristic measurements. The probes 3 and 4
measured the FP fluctuations, fV~ . As a recording facility,
a 12 bit ADC with 1.6 µs sampling rate/channel was used.
Fig. 1. Relative lay-out of helical coils I, II, III and
calculated edge structure of field lines in the poloidal
cross-section where measurements are made.The range of
probe array LP displacement is indicated by a bold
straight segment
3. DYNAMICS OF EDGE DENSITY AND
POTENTIAL PROFILES DURING THE
TRANSITION
In Fig. 2 edge radial profiles are presented of (a)
electron density (in relative units), (b) floating potential,
Vf, and (c) electron temperature, Te, measured at t1 = 20
ms (before the start of transition) and t2 = 45 ms (after
transition). As follows from Fig. 2, the transition is
accompanied by a small broadening (∆r ~ 1 mm) of the
plasma column (Fig. 2(a) and by a more distinct change
of the FP profile, Vf(r), (Fig. 2(b)). As according to Fig.
2(c), the electron temperature does not change
significantly with r at the plasma boundary, the radial
profile of the plasma potential, Vp(r), should have
qualitatively the same form as Vf(r). Then it follows from
this form that a layer with a radial electric field shear
Problems of Atomic Science and Technology. 2005. № 1. Series: Plasma Physics (10). P. 21-23 21
0
1
0
20
40
60
80
0
20
40
60
(m)r
- before transition
- after transition
0.130.120.11
(V)Vf
(eV)Te
en
(a)
(b)
(c)
(rel.u.)
Fig. 2
occurs at the plasma boundary during the transition (Er is
directed inward at r < 11.75 cm and outward at r > 11.75
cm). Hence, the velocity of plasma poloidal rotation E×B
reverses its direction in this layer. As it has been shown
recently [4], the ExB velocity shear seriously affects the
edge turbulence, resulting in a quenching of the
fluctuations, their de-correlation and a reduction of the
radial turbulent flux of particles and heat.
4. CHANGES OF EDGE TURBULENCE
CHARACTERISTICS DURING THE
TRANSITION
The time evolution of the ISC fluctuations sI~ in the
vicinity of the E×B velocity shear layer (r = 11 cm)
during the transition is shown in Fig. 3(b) together with
the density en (Fig. 3(a)). Also, in Fig. 3(b) shown is in
the sI~ (t) background the time behavior of the
corresponding r.m.s. value, < sI~ >t , averaged over the 200
µs interval. It is seen that the intensity of plasma density
(ISC) fluctuations is appreciably reduced with the
transition.
Fig. 3
As a result of a more detailed analysis, the process of
transition can be divided into three phases. A fragment of
the < sI~ >t time evolution in the vicinity of the transition (r
= 11 cm) is shown at the top of Fig. 4. The state preceding
the transition is denoted as I. The initial phase of the
transition consists of two separate phases, A and B,
lasting for ~ 1-2 ms, while the third phase, C, persists till
the end of RF pulse. Below, in the left column of Fig. 4,
shown are the normalized power spectra of the ISC
fluctuations in the preceding state and three phases of the
Fig. 4
transition. The percentages indicate the power fraction
contained in the f > 100 kHz frequency region. The
corresponding non-normalized spectra are in the right
column, where the numbers indicate the total (i.e., over
the entire frequency diapason) power for each phase
relative to that in the preceding state (I). It follows from
Fig. 4 that a considerable reduction of the total fluctuation
power arises at the phase A with a simultaneous reduction
of the high-frequency (f > 100 kHz) power fraction. A
further reduction of the fluctuation power is observed at
the phase B with some redistribution of the total power
over the entire frequency region and a rise of power
fraction in the high-frequency part of the spectrum. At
last, at the phase C, where some deterioration of the
confinement occurs, a small rise of both the total power
and its high-frequency fraction takes place. The time
behavior of the FP fluctuations is qualitatively the same.
In Fig. 5 shown are (a) the phase spectrum between FP
fluctuations recorded by the probes 3 and 4, and (b) the
coherence spectrum between the density and potential
fluctuations ( sI~ , probe 2; fV~ , probe 3) at the state I and
at the phase C. The values of the poloidal phase velocity
of the fluctuations at r = 11 cm are 5.4×105 cm/s before
the transition, 8.4×105 cm/s at the phase A and
7×105 cm/s at the phase C. It is impossible to determine
the phase velocity at the phase B as there is no linear
section in the cross-coherence spectrum. This is possibly
caused by a strong de-correlation of the fluctuations at
this phase of the transition.
Together with (a) the density en , Fig. 6 shows (b)
the time evolution of the function
)(~ tG = s
~I (t)[ 4
~
fV (t)- 3
~
fV (t)]
that is proportional to the radial turbulent particle flux,
TΓ
~ = θEn ~~ /Bφ, [5]. The 200 µs interval-averaged turbulent
flux is presented in white. Below (Fig. 6(c)), a section of
the averaged turbulent flux is shown in the vicinity of
22
Fig. 5
Fig. 6
transition (shaded in Fig. 6(b)). It is seen that an
appreciable reduction of the flux takes place
simultaneously with the reduction of the fluctuation level
(cf., Fig. 4). The maximum reduction of the flux is 3.3 at
the phase (B) and 2.2 at the phase (C) as compared with
the preceding state (I).
Like some other tokamaks and stellarators, an
intermittency is inherent to the turbulent flux of particles
in the U-3M torsatron. This intermittency is displayed as
strong short-time separate bursts, whose amplitude can
multiply exceed the average flux level [5]. The burst
amplitude decreases with transition similar to the average
level of the turbulent flux. However, the fraction of flux
transported in the bursts does not change substantially
before and after the transition.
5. SUMMARY
In the U-3M torsatron under RF plasma production
and heating conditions, a spontaneous change of the
confinement state due to the ITB formation is also
accompanied by an ETB formation in the layer of
stochastisized field lines. The indications of ETB
formation are:
• appearance (or rise) of the radial electric field shear near
the plasma boundary;
• reduction of the level of plasma density and potential
fluctuations;
• reduction of the high frequency fraction (f >100 kHz) in
the power spectra of the fluctuations (at least at the A and
B phases);
• reduction of the coherence between density and
potential fluctuations in the high frequency region;
• more than two-fold reduction of the radial turbulent
particle flux near the plasma boundary.
This work was carried out in collaboration with
National Institute for Fusion Science (Japan) within the
Program LIME.
REFERENCES
[1] E.D. Volkov et al.//Proc. 14th Int. Conf. on Plasma
Physics and Controlled Nuclear Fusion Research,
Wurzburg, 1992 / IAEA, Vienna, 1992, v. 2, p. 679.
[2] E.D. Volkov et al.//Problems of Atomic Science and
Technology. Series: “Plasma Physics”(9). 2003, N1, p. 3.
[3] V.V. Chechkin , et al. Divertor flow and particle loss
behaviors in spontaneous change of plasma confinement
state in the Uragan-3M torsatron// (to be published in the
next issue).
[4] K.H. Burrell//Phys. Plasmas (4). 1997, p. 1499
[5] E.L. Sorokovoy et al.// Problems of Atomic Science
and Technology. Series: “Plasma Physics”(8). 2002,
N 5, p. 6.
ХАРАКТЕРИСТИКИ ТУРБУЛЕНТНОСТИ КРАЕВОЙ ПЛАЗМЫ ПРИ СПОНТАННОМ ИЗМЕНЕНИИ
РЕЖИМА УДЕРЖАНИЯ В ТОРСАТРОНЕ «УРАГАН-3М»
Э.Л. Сороковой, Л.И. Григорьева, В.В. Чечкин, Е.Д. Волков, Е.Л. Сороковой, П.Я. Бурченко,
С.А. Цыбенко, А.В. Лозин, А.П. Литвинов, С. Масузаки, К. Ямазаки
В торсатроне У-3М при изменении режима удержания плазмы, вызванном образованием внутреннего
транспортного барьера, вблизи границы плазмы появляется слой с широм скорости Е×В. Соответствующие
изменения характеристик мелко-масштабной турбулентности в окрестности этого слоя и вызванного
турбулентностью радиального потока частиц, свидетельствуют об образовании также и краевого транспортного
барьера.
ХАРАКТЕРИСТИКИ ТУРБУЛЕНТНОСТІ КРАЙОВОЇ ПЛАЗМИ ПРИ СПОНТАННІЙ
ЗМІНІ РЕЖИМУ УТРИМАННЯ В ТОРСАТРОНІ «УРАГАН-3М»
Е.Л. Сороковий, Л.І. Григор’єва, В.В. Чечкін, Є.Д. Волков, Є.Л. Сороковий, П.Я. Бурченко,
С.А. Цибенко, О.В. Лозін, А.П. Литвинов, С. Масузакі, К. Ямазакі
23
В торсатроні У-3М при зміні режиму утримання, викликаній створенням внутрішнього транспортного
бар’єра, біля границі плазми виникає шар з шіром швидкості Е×В. Відповідні зміни характеристик
дрібномасштабної турбулентності поблизу цього шару та викликаного турбулентністю радіального потоку
частинок свідчать про створення також і крайового транспортного бар’єра.
|