Interaction between a coaxial cavity and low beta intense electron beams

Experiments and simulations for intense relativistic electron beams with energy of <1 MeV and current of several kA that pass through a gap are carried out. A criterion is proposed for the gap length through which the beam current passes without loss, i.e. no electron is reflected by virtual ca...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Вопросы атомной науки и техники
Дата:2004
Автори: Keiichi Kamada, Takashi Nishiguchi, Keiichi Ishibana, Masaki Kamada, Ritoku Ando
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2004
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/78478
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Interaction between a coaxial cavity and low beta intense electron beams / Keiichi Kamada, Takashi Nishiguchi, Keiichi Ishibana, Masaki Kamada, Ritoku Ando // Вопросы атомной науки и техники. — 2004. — № 1. — С. 28-31. — Бібліогр.: 8 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-78478
record_format dspace
spelling Keiichi Kamada
Takashi Nishiguchi
Keiichi Ishibana
Masaki Kamada
Ritoku Ando
2015-03-18T14:06:46Z
2015-03-18T14:06:46Z
2004
Interaction between a coaxial cavity and low beta intense electron beams / Keiichi Kamada, Takashi Nishiguchi, Keiichi Ishibana, Masaki Kamada, Ritoku Ando // Вопросы атомной науки и техники. — 2004. — № 1. — С. 28-31. — Бібліогр.: 8 назв. — англ.
1562-6016
PACS 52.59 Sa
https://nasplib.isofts.kiev.ua/handle/123456789/78478
Experiments and simulations for intense relativistic electron beams with energy of <1 MeV and current of several kA that pass through a gap are carried out. A criterion is proposed for the gap length through which the beam current passes without loss, i.e. no electron is reflected by virtual cathode. The time evolutions of energy and current of an intense electron beam can be modified using a gap structure and a coaxial cavity.
Представлено експериментальні дослідження і чисельне моделювання процесів автоприскорення при проходженні інтенсивних релятивістських електронних пучків (енергія порядку 1 МеВ і струм декілька килоампер) через коаксіальні резонатори. Знайдено критерій на довжину зазору між резонаторами для утворення віртуального катоду.
Представлены экспериментальные исследования и численное моделирование процессов автоускорения при прохождении интенсивных релятивистских электронных пучков (энергия порядка 1 МэВ и ток несколько килоампер) через коаксиальные резонаторы. Найден критерий на длину зазора между резонаторами для образования виртуального катода.
A part of this work is supported by a Grant-in-Aid for Scientific Research from Ministry of Education, Science, Sports and Culture, Japan.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Сильноточные импульсные ускорители
Interaction between a coaxial cavity and low beta intense electron beams
Взаємодія між коаксіальним резонатором і інтенсивними електронними пучками з малими бета
Взаимодействие между коаксиальным резонатором и интенсивными электронными пучками с малыми бета
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Interaction between a coaxial cavity and low beta intense electron beams
spellingShingle Interaction between a coaxial cavity and low beta intense electron beams
Keiichi Kamada
Takashi Nishiguchi
Keiichi Ishibana
Masaki Kamada
Ritoku Ando
Сильноточные импульсные ускорители
title_short Interaction between a coaxial cavity and low beta intense electron beams
title_full Interaction between a coaxial cavity and low beta intense electron beams
title_fullStr Interaction between a coaxial cavity and low beta intense electron beams
title_full_unstemmed Interaction between a coaxial cavity and low beta intense electron beams
title_sort interaction between a coaxial cavity and low beta intense electron beams
author Keiichi Kamada
Takashi Nishiguchi
Keiichi Ishibana
Masaki Kamada
Ritoku Ando
author_facet Keiichi Kamada
Takashi Nishiguchi
Keiichi Ishibana
Masaki Kamada
Ritoku Ando
topic Сильноточные импульсные ускорители
topic_facet Сильноточные импульсные ускорители
publishDate 2004
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Взаємодія між коаксіальним резонатором і інтенсивними електронними пучками з малими бета
Взаимодействие между коаксиальным резонатором и интенсивными электронными пучками с малыми бета
description Experiments and simulations for intense relativistic electron beams with energy of <1 MeV and current of several kA that pass through a gap are carried out. A criterion is proposed for the gap length through which the beam current passes without loss, i.e. no electron is reflected by virtual cathode. The time evolutions of energy and current of an intense electron beam can be modified using a gap structure and a coaxial cavity. Представлено експериментальні дослідження і чисельне моделювання процесів автоприскорення при проходженні інтенсивних релятивістських електронних пучків (енергія порядку 1 МеВ і струм декілька килоампер) через коаксіальні резонатори. Знайдено критерій на довжину зазору між резонаторами для утворення віртуального катоду. Представлены экспериментальные исследования и численное моделирование процессов автоускорения при прохождении интенсивных релятивистских электронных пучков (энергия порядка 1 МэВ и ток несколько килоампер) через коаксиальные резонаторы. Найден критерий на длину зазора между резонаторами для образования виртуального катода.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/78478
citation_txt Interaction between a coaxial cavity and low beta intense electron beams / Keiichi Kamada, Takashi Nishiguchi, Keiichi Ishibana, Masaki Kamada, Ritoku Ando // Вопросы атомной науки и техники. — 2004. — № 1. — С. 28-31. — Бібліогр.: 8 назв. — англ.
work_keys_str_mv AT keiichikamada interactionbetweenacoaxialcavityandlowbetaintenseelectronbeams
AT takashinishiguchi interactionbetweenacoaxialcavityandlowbetaintenseelectronbeams
AT keiichiishibana interactionbetweenacoaxialcavityandlowbetaintenseelectronbeams
AT masakikamada interactionbetweenacoaxialcavityandlowbetaintenseelectronbeams
AT ritokuando interactionbetweenacoaxialcavityandlowbetaintenseelectronbeams
AT keiichikamada vzaêmodíâmížkoaksíalʹnimrezonatoromííntensivnimielektronnimipučkamizmalimibeta
AT takashinishiguchi vzaêmodíâmížkoaksíalʹnimrezonatoromííntensivnimielektronnimipučkamizmalimibeta
AT keiichiishibana vzaêmodíâmížkoaksíalʹnimrezonatoromííntensivnimielektronnimipučkamizmalimibeta
AT masakikamada vzaêmodíâmížkoaksíalʹnimrezonatoromííntensivnimielektronnimipučkamizmalimibeta
AT ritokuando vzaêmodíâmížkoaksíalʹnimrezonatoromííntensivnimielektronnimipučkamizmalimibeta
AT keiichikamada vzaimodeistviemeždukoaksialʹnymrezonatoromiintensivnymiélektronnymipučkamismalymibeta
AT takashinishiguchi vzaimodeistviemeždukoaksialʹnymrezonatoromiintensivnymiélektronnymipučkamismalymibeta
AT keiichiishibana vzaimodeistviemeždukoaksialʹnymrezonatoromiintensivnymiélektronnymipučkamismalymibeta
AT masakikamada vzaimodeistviemeždukoaksialʹnymrezonatoromiintensivnymiélektronnymipučkamismalymibeta
AT ritokuando vzaimodeistviemeždukoaksialʹnymrezonatoromiintensivnymiélektronnymipučkamismalymibeta
first_indexed 2025-11-25T23:26:42Z
last_indexed 2025-11-25T23:26:42Z
_version_ 1850580450526887936
fulltext INTERACTION BETWEEN A COAXIAL CAVITY AND LOW BETA INTENSE ELECTRON BEAMS Keiichi Kamada, Takashi Nishiguchi, Keiichi Ishibana, Masaki Kamada and Ritoku Ando Faculty of Science, Kanazawa University, Kanazawa, 920-1192 Japan; E-mail address:kkamada@plasma.s.kanazawa-u.ac.jp Experiments and simulations for intense relativistic electron beams with energy of <1 MeV and current of several kA that pass through a gap are carried out. A criterion is proposed for the gap length through which the beam current passes without loss, i.e. no electron is reflected by virtual cathode. The time evolutions of energy and current of an intense elec- tron beam can be modified using a gap structure and a coaxial cavity. PACS 52.59 Sa 1. INTRODUCTION Interactions between a coaxial cavity and an intense relativistic electron beam (IREB) with strong self- and induced field are not only interesting for physics but also important for applications. As a typical application of IREBs, intense millimeter electromagnetic wave sources with output power of 1 GW< for nuclear fusion, particle accelerator, etc. utilize IREBs as energy sources. Relativistic klystron amplifiers (RKA), virtual cathode oscillators, and backward-wave oscillators, etc. using IREBs are intensively studied in this decade. Moreover, a new specific mechanism of microwave ra- diation called superradiance (SR) is proposed [1-3] us- ing an electron beam whose length is shorter than or comparable with interaction length. An IREB with dura- tion of less than 1 ns is requested for millimeter wave- band SR. However, it is technically difficult for conven- tional pulse line system to generate an IREB with pulse duration of less than 10 ns. We proposed multi-stage au- toacceleration using a series of passive coaxial cavities with decreasing lengths and obtained an IREB with du- ration of less than 1 ns from 12 ns IREB [4,5]. The au- toacceleration and the RKA use coaxial cavities con- nected to the drift tube via gaps. The radius of the tube increases suddenly at the entrance of the gap. Propaga- tion characteristics of an IREB through a gap are impor- tant subjects to study for autoacceleration, RKA and the devices with a cavity or a gap. When an electron beam propagates through a drift tube immersed in axial magnetic field, electrostatic po- tential in the tube due to the beam's space-charge field limits the beam current. In the case of a cylindrical beam propagating through a cylindrical tube, the limit- ing current is calculated by the initial energy (γ0) of electrons and the ratio of the beam radius (rb) to the tube radius (rt). For an annular beam, the limiting current (IL) is expressed as below € IL =I A (γ0 2 / 3 −1)3/ 2 2 ln(rt / rb ) , ( where IA = 17 kA is the Alfven current. The limiting cur- rent decreases where the radius of the tube increases. Because of comparatively low energy of IREBs, the space charge limiting current is comparable to the beam current, so that existence of a gap affects strongly to the propagation of the IREB. It is considered that a virtual cathode is formed at the gap and some electrons are re- flected when the beam current is much larger than the space charge limiting current at the gap. However, the above equation is derived for the beam with an infinite axial length. In the experiments, it is not clear how long the axial length is enough for a drift tube to apply the above equation. In this paper, we report the length of the gap through which the beam passes without loss and propose the modification of time evolutions of IREB’s energy and current using a coaxial cavity and a gap. 2. AN IREB PASSING THROUGH A GAP We employed a simple model to start this problem. As shown in Fig.1, a drift tube radius increases suddenly from r1 to r2 at z (z is the distance from an anode.) and decreases from r2 to r1 at z+d. The thicker part of the tube with length of d is named a gap here. An electron beam with current I which exceeds the space- charge limiting current IL at the gap is injected from z=0. We investigate the length d through which the IREB current passes through without loss. Fig.1 Simple model of a gap ] Intense relativistic annular electron beams with ener- gy of ~500 keV, current of 4~8 kA and duration of 12 ns were utilized in the experiment. The beam radius and current were changed. The beam propagated through a drift tube with diameter of 3 cm. A gap with diameter of 12 cm was located 20 cm downstream side of the anode. The length of the gap, d, was changed. The beam cur- rent was detected at the end of the drift tube with diame- ter of 3 cm by a Faraday cup. In order not to affect the presence of the Faraday cup to the experimental results, the Faraday cup was located 20 cm downstream side of the gap end. Figure 2 shows the beam current waveforms detect- ed at the downstream side of the gap for different gap __________________________________________________________ PROBLEMS OF ATOMIC SIENCE AND TECHNOLOGY. 2004. № 1. Series: Nuclear Physics Investigations (42), p.28-31.28 lengths. The space charge limiting current at the gap was evaluated to be 2.8 kA. Though the beam current of 8 kA was much larger than the limiting current, it passes through the gap without loss when the gap length is less than ~30 mm. Fig.2. The beam current waveform passing through the gap for different gap lengths (left). The maximum cur- rents passing through a gap are plotted against gap lengths In Fig.2, the maximum beam currents detected by the Faraday cup are also plotted against the gap length. The beam current decreases to the space charge limiting current at the gap gradually as the gap length increases. The gap length through which the beam passes without loss was also observed experimentally by changing the beam radius and/or current. The gap length through which the beam passes without loss increased as the beam current decreased and it increased as the beam ra- dius increased as expected. PIC simulation code KARAT was used. As the code KARAT simulated well the experimental results, we ex- tended the range of parameters with energy of 400~1750 keV, current of 3~9 kA and gap radius of 40~90 mm in the simulation. The relation between the gap length and the detected beam current at the down- stream side of the gap was investigated with different parameters. As shown in Fig.3, when the gap length is short, the formation of a virtual cathode is incomplete and the injected beam current can pass through the gap without loss. On the contrary, some of the electrons are reflected by virtual cathode, when the gap length is long. Dependencies of the gap length without loss on the current, energy and radius of the beam indicated the influence of the space-charge limiting current. In Fig.4, the simulated and experimental gap lengths through which the beam current passes without loss are plotted against calculated values of 2(R -rb) for each data, where R is the calculated maximum tube radius for the beam with current I, energy γ0 and radius rb by eq.(1). From the simulation results, the gap length increases with 2(R -rb) linearly. And from the experimental results, they also increase with 2(R -rb). We have no physical explanation about this relation yet. The quantitative differnce between the simulated and the experimental results are considered to come from precise differencies of the beam waveform parameters between them. In conclusion, we propose the gap length of 2(R - rb) as a rough criterion of the gap length through which the beam can pass without loss. Fig.3. KARAT simulation. Normalized axial momen- ta of electrons are plotted against the axial position. The formation of virtual cathode is incomplete (up) and the beam current can pass through the gap without loss. Virtual cathode is formed and some electrons are re- flected (down) __________________________________________________________ PROBLEMS OF ATOMIC SIENCE AND TECHNOLOGY. 2004. № 1. Series: Nuclear Physics Investigations (42), p.28-31.29 Fig.4. The gap length through which the beam passed without loss is plotted against 2(R - rb) 3. ENERGY AND CURRENT INCREASING WAVEFORMS OF AN IREB For observation of SR, it was proposed in [6] to use an IREB with increasing energy and current in time to increase peak power of SR pulse. As a cold cathode and an anode are utilized for conventional IREB generator, the voltage between diode applied by a Marx generator and a pulse forming line is changed by the evolution of the diode impedance caused by cathode and anode plasmas. There is no way to control the plasmas at the diode. The autoacceleration scheme can be a candidate to realize the IREB with increasing energy in time after the IREB injected from the anode. A coaxial cavity connected to the drift tube via gap is utilized in the autoacceleration. According to the transmission line theory, the gap voltage of a coaxial cavity, Vg(t), is expressed by the current at the gap, I(t), as below[7,8], € Vg(t)=Z×(I(t)−2I(t−T)+•••) (2) where Z is the cavity impedance and T is the round trip time of electromagnetic wave in the cavity. The beam is decelerated for the first period T and accelerated for the next period. As the initial electron energy and current waveforms are not square shape, we have a possibility to obtain a gradual increasing energy IREB using a cavity with appropriate length. Fig.5. Experimental setup We used a gap behind the coaxial cavity for autoacceleration in order to decrease the current in low energy part of the IREB. As the enegy of the electrons increases in time after the autoacceleration, we expect that a virtual cathode that reflects only the lower energy electrons is formed with appropriate gap length. The experimental setup is shown in Fig.5. The parameters of the IREB and experimental apparatus were almost the same as the above experiment. A Faraday cup was used to estimate the kinetic energy of beam electrons. Aluminum foils of various thicknesses were placed in front of the Faraday cup and a transmitted current through aluminum foils was measured. Using the ratio of the transmitted current to the current detected without foil and the range-energy relations, the maximum kinetic energy of beam electrons was estimated. Fig.6. Time evolution of energy with and without coaxial cabity. The cavity length is 60 cm. Calculated results shows good agreement with the experiment The time evolution of energy detected downstream side of the cavity with length of 60 cm is shown in Fig.6. The time evolution evaluated from the sum of the diode and gap voltages showed good agreements with the experimental results for different cavity lengths. The current waveform was little changed between before and after the coaxial cavity. Fig.7. Current waveforms after the gap The current waveforms after the gap were modified as shown in Fig.7. The time evolution of energy were not changed by the gap. The current at the time with higher energy was more decreased than lower energy part against our expectation. Electrons with lower energy were suspected to be included in the current at the time when higher energy electrons were observed. Precise experiments will be carried out for this problem. In conclusion, the time evolutions of electron energy and current can be changed using a coaxial cavity and a gap within the limit of initial diode waveforms. In connection with the design of a new diode, time evolutions of energy and current become easier to modify. A part of this work is supported by a Grant-in-Aid for Scientific Research from Ministry of Education, Science, Sports and Culture, Japan. REFERENCES 1. N.S. Ginzburg, I.V. Zotova // Sov. Tech Phys. Lett. 1989, v. 15, p. 573-574, 2. N.S. Ginzburg, I.V. Zotova, A.S. Sergeev, I.V. Konoplev, A.D.R. Phelps, A.W. Cross, S.J. Cooke, V.G. Shpak, M.I. Yalandin, S.A. Shunailov and M.R. Ulmaskulov // Phys. Rev. Lett. 1997, v.78, p.2365-2368, 3. S.M. Wiggins, D.A. Jaroszynsky, B.W.J. McNeil, G.R.M. Robb, P. Alitken, A.D.R. Phelps, A.W. Cross, K. Ronald, N.S. Ginzburg, V.G. Shpak, M.I. Yalandin, S.A. Shunailov and M.R. Ulmaskulov // Phys. Rev. Lett. 2000, v. 84, p.2393-2396. __________________________________________________________ PROBLEMS OF ATOMIC SIENCE AND TECHNOLOGY. 2004. № 1. Series: Nuclear Physics Investigations (42), p.28-31. 4. D. Hasegawa, K. Kamada, K. Shimizu, R. Ando and M. Masuzaki // IEEE trans. Plasma Sci. 2000, v.28, p.1648-1652. 5. D. Hasegawa, K. Kamada, A. Kuraku, R. Ando and M. Masuzaki // Jpn. J. Appl. Phys. 2001, v. 40, p.944-948. 6. N.S. Ginzburg, I.V. Zotova, R.M. Rozental, A.S. Sergeev, M. Kamada, K. Sugawara, K. Kuri- hara, H. Shirasaka, R. Ando, K. Kamada // Proc. 14th Int. Conf. High-Power Particles Beams. 2002, p.291-294. 7. M. Friedman // Appl. Phys. Lett. 1982, v. 41, p.419- 421, 8. M. Kamada, R. Ando, N.S. Ginzburg and K. Kama- da //IEEE trans. Plasma Sci. 2003, v. 31, p.297- 299. __________________________________________________________ PROBLEMS OF ATOMIC SIENCE AND TECHNOLOGY. 2004. № 1. Series: Nuclear Physics Investigations (42), p.28-31.31 ВЗАИМОДЕЙСТВИЕ МЕЖДУ КОАКСИАЛЬНЫМ РЕЗОНАТОРОМ И ИНТЕНСИВНЫМИ ЭЛЕКТРОННЫМИ ПУЧКАМИ С МАЛЫМИ БЕТА Кеичи Камада, Такаши Нишигучи, Кеичи Ишибана, Масаки Камада, Ритоку Андо Представлены экспериментальные исследования и численное моделирование процессов автоускорения при прохождении интенсивных релятивистских электронных пучков (энергия порядка 1 МэВ и ток несколь- ко килоампер) через коаксиальные резонаторы. Найден критерий на длину зазора между резонаторами для образования виртуального катода. ВЗАЄМОДІЯ МІЖ КОАКСІАЛЬНИМ РЕЗОНАТОРОМ І ІНТЕНСИВНИМИ ЕЛЕКТРОННИМИ ПУЧКАМИ З МАЛИМИ БЕТА Кеичи Камада, Такаши Нишигучи, Кеичи Ишибана, Масаки Камада, Ритоку Андо Представлено експериментальні дослідження і чисельне моделювання процесів автоприскорення при проходженні інтенсивних релятивістських електронних пучків (енергія порядку 1 МеВ і струм декілька килоампер) через коаксіальні резонатори. Знайдено критерій на довжину зазору між резонаторами для утворення віртуального катоду. 31 электронными пучками с малыми бета