Periodic electron motion in the field of intensive plane light wave

Results of integration of the Lorentz-Dirac equation for electron motion in the field of intensive light wave are given in this work. Diagrams and parameters, which characterize the periodic motion of a relativistic electron, are shown. Formulas of the spectral-angular distribution of the electromag...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Вопросы атомной науки и техники
Дата:2001
Автори: Grigor’ev, Yu.N., Zvonaryova, O.D.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2001
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/78520
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Periodic electron motion in the field of intensive plane light wave / Yu.N. Grigor’ev, O.D. Zvonaryova // Вопросы атомной науки и техники. — 2001. — № 1. — С. 92-93. — Бібліогр.: 2 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-78520
record_format dspace
spelling Grigor’ev, Yu.N.
Zvonaryova, O.D.
2015-03-18T17:34:37Z
2015-03-18T17:34:37Z
2001
Periodic electron motion in the field of intensive plane light wave / Yu.N. Grigor’ev, O.D. Zvonaryova // Вопросы атомной науки и техники. — 2001. — № 1. — С. 92-93. — Бібліогр.: 2 назв. — англ.
1562-6016
PACS: 41.60.-m, 41.85.-p., 29.27.-a
https://nasplib.isofts.kiev.ua/handle/123456789/78520
Results of integration of the Lorentz-Dirac equation for electron motion in the field of intensive light wave are given in this work. Diagrams and parameters, which characterize the periodic motion of a relativistic electron, are shown. Formulas of the spectral-angular distribution of the electromagnetic field irradiated by a relativistic electron, moving towards electromagnetic wave, were obtained.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Theory and technics of particle acceleration
Periodic electron motion in the field of intensive plane light wave
Периодическое движение электрона в поле интенсивной плоской световой волны
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Periodic electron motion in the field of intensive plane light wave
spellingShingle Periodic electron motion in the field of intensive plane light wave
Grigor’ev, Yu.N.
Zvonaryova, O.D.
Theory and technics of particle acceleration
title_short Periodic electron motion in the field of intensive plane light wave
title_full Periodic electron motion in the field of intensive plane light wave
title_fullStr Periodic electron motion in the field of intensive plane light wave
title_full_unstemmed Periodic electron motion in the field of intensive plane light wave
title_sort periodic electron motion in the field of intensive plane light wave
author Grigor’ev, Yu.N.
Zvonaryova, O.D.
author_facet Grigor’ev, Yu.N.
Zvonaryova, O.D.
topic Theory and technics of particle acceleration
topic_facet Theory and technics of particle acceleration
publishDate 2001
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Периодическое движение электрона в поле интенсивной плоской световой волны
description Results of integration of the Lorentz-Dirac equation for electron motion in the field of intensive light wave are given in this work. Diagrams and parameters, which characterize the periodic motion of a relativistic electron, are shown. Formulas of the spectral-angular distribution of the electromagnetic field irradiated by a relativistic electron, moving towards electromagnetic wave, were obtained.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/78520
citation_txt Periodic electron motion in the field of intensive plane light wave / Yu.N. Grigor’ev, O.D. Zvonaryova // Вопросы атомной науки и техники. — 2001. — № 1. — С. 92-93. — Бібліогр.: 2 назв. — англ.
work_keys_str_mv AT grigorevyun periodicelectronmotioninthefieldofintensiveplanelightwave
AT zvonaryovaod periodicelectronmotioninthefieldofintensiveplanelightwave
AT grigorevyun periodičeskoedviženieélektronavpoleintensivnoiploskoisvetovoivolny
AT zvonaryovaod periodičeskoedviženieélektronavpoleintensivnoiploskoisvetovoivolny
first_indexed 2025-11-25T22:51:41Z
last_indexed 2025-11-25T22:51:41Z
_version_ 1850575169172537344
fulltext PERIODIC ELECTRON MOTION IN THE FIELD OF INTENSIVE PLANE LIGHT WAVE Yu.N. Grigor’ev, O.D. Zvonaryova National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine Results of integration of the Lorentz-Dirac equation for electron motion in the field of intensive light wave are given in this work. Diagrams and parameters, which characterize the periodic motion of a relativistic electron, are shown. Formulas of the spectral-angular distribution of the electromagnetic field irradiated by a relativistic electron, moving towards electromagnetic wave, were obtained. PACS: 41.60.-m, 41.85.-p., 29.27.-a 1. In [1] the Dirac-Lorentz equation for motion of a relativistic electron in the field of travelling linearly polarized plane light wave was integrated. The bremsstrahlung force produced by the electron radiation was taking into account. It was shown, that the bremsstrahlung force results in an appearance of decrement. However, under some conditions the periodic motion of a radiating electron is possible. In the present work approximate conditions of the existence of periodic motion of a radiating electron are analyzed. Diagrams of electron periodic motion were calculated without taking into account the radiation. Formulas of spectral-angular distribution of electromagnetic radiation intensity for an electron, which is moving periodically in a wave field, were obtained. 2. The Dirac-Lorentz equation of electron motion in the electromagnetic theory [2] can be written as RLm dt d FFv += , (1) ( ) 0 2 1 2 0 ,v,1 m c mm =−= ββ is the rest mass of an electron, c is the light velocity, v is the vector of electron velocity, FL is the Lorentz force, FR is the bremsstrahlung force. It could be shown [1] that when FR = 0 in the field of plane electromagnetic wave the integral of motion takes place: ( )( ) ( )( ) ( )( ) ( )( ) Btt xx =−+=−+ 212212 010111 ββββ , (2) where cxх v=β , vx is the velocity projection onto the x-axes, "0" designates a value at the initial time instant. By proceeding to new variable “S” (instead of “t”) Eq. (1) could be reduced to the form: ( ) ( )( ) ( )( ) +         − −±++ +    += c dS dvSEr dS d c ee dS d x ae ri rEnEr 01 012cos1 3 2 2 2 222 0 00 2 2 β βδπ µ µµ  ( ) ( )( ) ( ) × β− β λ δ+ππ µ + 01 012sin21 3 2 20 xae vSeErr  ,ik     ±−× c dS dz (3) where 2 0 2 cmere = is the radius of electron, νλ c= is the light wavelength, Bm00 =µ , k and i are unit vectors of the z-axes and x-axes, respectively.       +     −= δπ ν c taEzE rn2cos , [ ]EnH  = , (4) where n is the normal to the wave front, r is a radius- vector, δ is the phase initial value. E, H are vectors of electric and magnetic fields, respectively. 21;1; ββ −=−=−= B dt dS dt dS c tS x nr . (5) 3. It could be shown that Eq. (3) under some conditions has a periodic solution. Approximate conditions for electron periodic motion without taking into account bremsstrahlung force (FR ≡0) are reduced to following expressions ( ) ( ) ( )π νµ δ 2 ;sin0;00 0 aeE ppzy ==′=′ ; (6) ( ) ( ) [ ]caB dNSMSL 1 1 0 2 1 22cos22cos 1 + =++++ − ∫ − ν ξδπ νδπ ν ν (7) [ ] 1 2 ;1 2 1;2 22 2 2 1 1 2224244 +    += +−== − −−− BcpaN caBcpMpBcL ( ) δ2cos 4 10 2 1 c pxa +′= ; (8) ( ) ; cos1 cos 0; cos1 sin )0( αβ αβ αβ αβ − ==′ − ==′ c dS dxx c dS dzz where α is the angle between initial directions of v and i. Eq. (6) is the condition of electron periodic motion with the period ν--1 on z. Eq. (7) is the condition of periodicity on time. It was obtained from the requirement that, when electron passed along x-axis the distance equal to 1 1 −νa , it came to the same wave phase. The numerical calculations have shown, that Eq. (7) is the result of Eq. (6). To obtain the spectral - angular distribution of radiation intensity of electron moving in the xz plane, we calculate electric field components in the wave zone [2]: 92 PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2001, № 1. Series: Nuclear Physics Investigations (37), p. 92-93. ( ) ( ) ( ) ( )dSezx T ilw Rc ellw SilwF c R ilw x ∫ − ′+′−−= 1 0 2 2 sinsin ν ϕϕε , (9) ( ) ( ) ( ) ( ) dSexz T ilw Rc el lw SilwF c Rilw z ∫ − ′+′−−= 1 0 2 2 coscos ν ϕϕε , (10) ( ) 0=lwyε , yzx εεε ,, are the projections of a radiating vector of electrical component. ( )ϕϕ sincos1)( zx cc xSSF +−+= , (11) ( ) ( ) ;2sin;22cos 4 1 2 δπ νδπ ν +=′++=′ SpzaS c px ( ) ( ) ( ) ( ) ( ) ( ) ( ) ;cos 2 0;2sin 44 0 2cos 2 ;22sin 44 2 2 2 2 21 2 δ νπ δ νπ δνπ νπ δνπ νπ pzc c Rxa cSpz aSaS c px +=+= ++−= +++−= R is the distance from an electron to the point of observation, ϕ is the angle between unit vector of x-axis i, and vector, directed from the coordinate origin to the point of observation.     += − c aT 11 1ν is the period of electron motion on the trajectory, Tw π2= . Using the given formulas, we can obtain fundamental frequencies of the electromagnetic field radiation in the point of observation: ( ) 12 1 1 2;cos11 ff c a f =    −+= ϕν ; (12) ( )      −+    += ϕcos111 11 c a c a l ; l is the number of radiation harmonic. The formula for l (whole number) puts a requirement on a relation between parameters of wave and particle, and ensures a linear spectrum of radiation, typical under a periodic electron motion on time. During the calculation Eq. (12) the small oscillations x and z were not taken into account. Small x and z will give higher radiation harmonics but very small in comparison with fundamental harmonics of radiation. The known formula of maximum frequency of Compton scattering for εz follows from Eq. (12): νγ 2 1 4≈f (13) when 2 0,, cmW=== γπϕπα , W is the electron energy. The formula (13) is obtained at limitation on intensity of a plane wave Ea: ( ) 22 1 0 − < <        = γ νπµ aeE c p . (14) For example, at W = 50 MeV,  = 3*1014 Hz Ea should be less than magnitude 8102 ∗π V/m. From these formulas the important result follows: with increasing of the incident wave intensity Ea the frequency of electron radiation decreases and tends to frequency of the incident wave at very large values. It is connected with decreasing of velocity of electron, which oscillates in a wave field towards the observer. So, at a1=0 the electron stops to move along the x-axis and Doppler effect disappears. The electron reradiates the incident wave. Figures 1-3 show the trajectories of an electron with energy 50 MeV in the field of a travelling wave for typical cases: ν = 3*1014 Hz, ϕ = π. 1) Ea = 108 V/m, α= π-3*10-7, δ=1,3; f1=1,2*1019 Hz; 2) Ea = 5*1014 V/m, α= π-10-2, δ=0,0064, f1=9,93*1014 Hz; 3) Ea = 9,1*1014 V/m, α=π-10-2, δ=0,0035, f1=3*1014 Hz. -410-6 -310-6 -210-6 -110-6 X, m Z, m 3 10 -14 2 10 -14 1 10 -14 n Fig. 1 10-6 10-6 -510-7 X, m Z, m 2.510-7 2 10-7 1.5 10-7 1 10-7 5 10-8 -1.5-2.5 n Fig. 2 -310 -7 -110 -7 110 -7 310 -7 110 -6 210 -6 310 -6 410 6 - Z, m X, m n Fig. 3 REFERENCES 1. Yu.N. Grigor’ev, O.D. Zvonaryova, I.M. Karnau- khov. Electron motion in the field of intensive plane light wave // VANT, 2000, N2, p. 72-75. 2. L.D. Landau and E.M. Lifshits A field theory. 1960, Moscow: “Nauka”, p. 416. 2 PERIODIC Electron Motion in the Field of Intensive Plane Light Wave Yu.N. Grigor’ev, O.D. Zvonaryova National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine REFERENCES