VUV radiation during plasma/surface interaction under plasma stream power density of 20 : 40 MW/cm2
This work was supported in part by MINATOM RF under contract no. 6.23.19.19.00.924 and by the Russian Foundation for Basic Research (project no. 00-02-18028).
Saved in:
| Date: | 2000 |
|---|---|
| Main Authors: | , , , , , , , |
| Format: | Article |
| Language: | English |
| Published: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2000
|
| Series: | Вопросы атомной науки и техники |
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/78566 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | VUV radiation during plasma/surface interaction under plasma stream power density of 20 : 40 MW/cm2 / S.G. Vasenin, N.I. Arkhipov, V.P. Bakhtin, S.M. Kurkin, V.M. Safronov, D.A. Toporkov, H. Wuerz, A.M. Zhitlukhin // Вопросы атомной науки и техники. — 2000. — № 6. — С. 97-99. — Бібліогр.: 13 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-78566 |
|---|---|
| record_format |
dspace |
| spelling |
nasplib_isofts_kiev_ua-123456789-785662025-02-09T16:54:54Z VUV radiation during plasma/surface interaction under plasma stream power density of 20 : 40 MW/cm2 Vasenin, S.G. Arkhipov, N.I. Bakhtin, V.P. Kurkin, S.M. Safronov, V.M. Toporkov, D.A. Wuerz, H. Zhitlukhin, A.M. Plasma dynamics and plasma-wall interaction This work was supported in part by MINATOM RF under contract no. 6.23.19.19.00.924 and by the Russian Foundation for Basic Research (project no. 00-02-18028). 2000 Article VUV radiation during plasma/surface interaction under plasma stream power density of 20 : 40 MW/cm2 / S.G. Vasenin, N.I. Arkhipov, V.P. Bakhtin, S.M. Kurkin, V.M. Safronov, D.A. Toporkov, H. Wuerz, A.M. Zhitlukhin // Вопросы атомной науки и техники. — 2000. — № 6. — С. 97-99. — Бібліогр.: 13 назв. — англ. 1562-6016 https://nasplib.isofts.kiev.ua/handle/123456789/78566 533.9 en Вопросы атомной науки и техники application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| language |
English |
| topic |
Plasma dynamics and plasma-wall interaction Plasma dynamics and plasma-wall interaction |
| spellingShingle |
Plasma dynamics and plasma-wall interaction Plasma dynamics and plasma-wall interaction Vasenin, S.G. Arkhipov, N.I. Bakhtin, V.P. Kurkin, S.M. Safronov, V.M. Toporkov, D.A. Wuerz, H. Zhitlukhin, A.M. VUV radiation during plasma/surface interaction under plasma stream power density of 20 : 40 MW/cm2 Вопросы атомной науки и техники |
| description |
This work was supported in part by MINATOM RF under contract no. 6.23.19.19.00.924 and by the Russian Foundation for Basic Research (project no. 00-02-18028). |
| format |
Article |
| author |
Vasenin, S.G. Arkhipov, N.I. Bakhtin, V.P. Kurkin, S.M. Safronov, V.M. Toporkov, D.A. Wuerz, H. Zhitlukhin, A.M. |
| author_facet |
Vasenin, S.G. Arkhipov, N.I. Bakhtin, V.P. Kurkin, S.M. Safronov, V.M. Toporkov, D.A. Wuerz, H. Zhitlukhin, A.M. |
| author_sort |
Vasenin, S.G. |
| title |
VUV radiation during plasma/surface interaction under plasma stream power density of 20 : 40 MW/cm2 |
| title_short |
VUV radiation during plasma/surface interaction under plasma stream power density of 20 : 40 MW/cm2 |
| title_full |
VUV radiation during plasma/surface interaction under plasma stream power density of 20 : 40 MW/cm2 |
| title_fullStr |
VUV radiation during plasma/surface interaction under plasma stream power density of 20 : 40 MW/cm2 |
| title_full_unstemmed |
VUV radiation during plasma/surface interaction under plasma stream power density of 20 : 40 MW/cm2 |
| title_sort |
vuv radiation during plasma/surface interaction under plasma stream power density of 20 : 40 mw/cm2 |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| publishDate |
2000 |
| topic_facet |
Plasma dynamics and plasma-wall interaction |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/78566 |
| citation_txt |
VUV radiation during plasma/surface interaction under plasma stream power density of 20 : 40 MW/cm2 / S.G. Vasenin, N.I. Arkhipov, V.P. Bakhtin, S.M. Kurkin, V.M. Safronov, D.A. Toporkov, H. Wuerz, A.M. Zhitlukhin // Вопросы атомной науки и техники. — 2000. — № 6. — С. 97-99. — Бібліогр.: 13 назв. — англ. |
| series |
Вопросы атомной науки и техники |
| work_keys_str_mv |
AT vaseninsg vuvradiationduringplasmasurfaceinteractionunderplasmastreampowerdensityof2040mwcm2 AT arkhipovni vuvradiationduringplasmasurfaceinteractionunderplasmastreampowerdensityof2040mwcm2 AT bakhtinvp vuvradiationduringplasmasurfaceinteractionunderplasmastreampowerdensityof2040mwcm2 AT kurkinsm vuvradiationduringplasmasurfaceinteractionunderplasmastreampowerdensityof2040mwcm2 AT safronovvm vuvradiationduringplasmasurfaceinteractionunderplasmastreampowerdensityof2040mwcm2 AT toporkovda vuvradiationduringplasmasurfaceinteractionunderplasmastreampowerdensityof2040mwcm2 AT wuerzh vuvradiationduringplasmasurfaceinteractionunderplasmastreampowerdensityof2040mwcm2 AT zhitlukhinam vuvradiationduringplasmasurfaceinteractionunderplasmastreampowerdensityof2040mwcm2 |
| first_indexed |
2025-11-28T07:01:33Z |
| last_indexed |
2025-11-28T07:01:33Z |
| _version_ |
1850016585249456128 |
| fulltext |
UDC 533.9
Problems of Atomic Science and Technology. 2000. № 6. Series: Plasma Physics (6). p. 97-99 97
VUV RADIATION DURING PLASMA/SURFACE INTERACTION UNDER
PLASMA STREAM POWER DENSITY OF 20 ÷÷÷÷ 40 MW/CM2
S.G. Vasenin1, N.I. Arkhipov1, V.P. Bakhtin1, S.M. Kurkin1, V.M. Safronov1, D.A. Toporkov1,
H. Wuerz2, A.M. Zhitlukhin1
1 Troitsk Institute for Innovation and Fusion Research, 142190 Troitsk Russia
2 Forschungszentrum Karlsruhe, P.O. Box 3640, 76021 Karlsruhe Germany
1. Introduction
An interest in powerful hydrogen plasma gun application
for solid-state materials treatment has increased in the past few
decades. Current powerful plasma guns – MK-200, QSPA,
MKT (TRINITI, Russia), QSPA Kh-50 (KIPT, Ukraine),
VIKA (Efremov Institute, Russia), PLADIS (USA) – are
employed widely both for plasma/surface interaction
investigation [1-5] and for surface modification [6].
With the onset of action of powerful plasma stream an
exposed surface begins being quickly eroded. As a result,
dense plasma containing target ions forms near the target
surface. In several µs impacting hydrogen ions cannot reach the
surface directly and further energy transfer to the surface is
determined by transport in target plasma. Electron density
profile increasing as the surface is approached makes radiant
heat transfer onto the surface difficult. Only a small part of
hydrogen stream energy can attain the target surface. The rest
of the stream energy can be accommodated by three possible
ways: 1) hydrogen ions conserve their energy and don’t
transmit it to target ions; 2) hydrogen ions do transmit energy
to target plasma that can flow around an exposed target; 3)
there is effective energy transmission to target plasma which,
in its turn, re-radiates the bulk of transmitted energy into the
surroundings. First case is common to experiments where fairly
dense and rather cold hydrogen plasma is used, and so self-
retarding of hydrogen plasma takes place. Second case is
characteristic for plasma/surface interaction without strong
longitudinal magnetic field, which would prevent plasma from
transversal motion and so, in the first place, would prevent
hydrogen plasma from flowing around the target and, secondly,
would prevent target plasma from mass loss due to its
transverse motion. In respect to radiative properties of target
plasma the third case is the most attractive. High directed
velocity accompanied with moderate density of hydrogen
stream is favorable for energy exchange with target plasma,
and strong magnetic field prevents target plasma from
transversal spreading and assists in plasma heating. An
efficiency of stream energy conversion into VUV radiation is
expected to be maximal in this case. It is these conditions of
plasma/surface interaction that have been realized at MK-
200UG plasma facility. Extensive set of VUV radiation
diagnostic techniques – 2D radiating region mapping, time-
integrated and time-resolved VUV spectroscopy, radiation
calorimetry – along with tools for plasma stream properties
measurements make possible analysing the role of VUV
radiation at plasma/surface interaction process.
2. Experimental facility and diagnostic techniques
The experiments were performed at the MK-200UG
facility (Fig.1). It consists of MK-500 pulsed plasma gun, 9.5-
m length drift tube filled with a longitudinal magnetic field and
a target chamber with attached diagnostic tools. The drift tube
consists of cylindrical and conical sections. The magnetic field
strength is about 0.7 T in a cylindrical part and it rises from 0.7
T up to 2 T along a conical part.
The plasma gun injects a supersonic hydrogen plasma
stream into the drift tube. While a plasma stream moves in the
long drift tube, its length increases because of plasma velocity
dispersion. Passing through increasing magnetic field a
supersonic plasma stream is compressed in radial direction and
is effectively magnetised.
plasma 9.5-m drift tube target
gun transportation compression chamber
zone zone
1 2
gas puff electrodes magnetic coils viewing ports target
Fig.1. Principal scheme of MK-200UG facility
Interaction with a target occurs in a target chamber 30-cm
in diameter and 50-cm in length. There is a longitudinal
magnetic field of 2 T in the chamber. Parameters of free
plasma stream at a target position are the following: energy
density q≈ 1.2 kJ/cm2; power density W = 20 ÷ 40 MW/cm2;
plasma stream duration τ≈ 40 µs; directed ion energy Ei= 1.5
keV (it decreases down to 300 eV by the end of the pulse);
electron density n = (2 ÷ 6)×1015 cm-3; electron temperature
Te= 200 ÷ 100 eV; beta value ;3.08 2 =⋅⋅= BPπβ effective
plasma stream diameter D ≈ 7 cm. The plasma stream
parameters are practically constant along the target chamber
length. An exposed target has been installed in the chamber
normally to impinging plasma stream.
High-sensitive thermoelectric radiation calorimeter [7] is
employed for time- and spectrum integrated measurements of
radiative loss from target plasma. Aluminium oxide film is
used as a facing coating. It provides an absorption coefficient
K being more than 98% for spectral band 4 A<λ <12 µm, with
the exception of region 240 A <λ< 2400 A where K ≥ 85% [7].
2D maps of radiating plasma region distribution are taken
with a help of pinhole camera. A 4x2 pinhole array forms 8
images on input face of circular microchanel plate (MCP) [8].
The input face has been electrically divided into 8 pieces. The
pieces are fed one after another by their 100-ns gating pulse.
As a result 8 frames with 100-ns exposure are captured. All
electron images are converted into visible ones via a phosphor
and then they fiber-optically make a replica on Kodak 2484
film. No filter has been used and so the region λ< 1500 ÷ 2000
A, defined only by MCP spectral sensitivity, is under study.
To perform VUV spectral measurements a transmission
grating spectrometer has been chosen. An employed free-
standing gold grating has period of 2000A. Time-integrated
spectra have been recorded with XTE/CCD-1024 TKB/1 back-
illuminated CCD camera [9] or Kodak 101 X-ray film. MCP-
based multiframing camera [8] has been used for taking 4 time-
resolved spectra with 100-ns exposure duration.
3. Experimental results
Pinhole frames of plasma radiation demonstrate that strong
magnetic field suppresses effectively a transversal motion of
target plasma. As a result of quasi-1D motion of radiating ions,
an emitting plasma column, which is extended along magnetic
field lines and which has rather sharp edges, appears in front of
exposed target. For example, Fig.2 displays pinhole pictures
near tungsten target 5-cm wide. An appearance of emitting
region, its growth and a formation of stable plasma column are
clearly seen in successive frames. It should be mentioned that
radiating column is slightly wider than the target width (6 ÷ 7
cm vs. 5 cm) and its width doesn’t alter with a distance from
the target surface.
98
0
20
40
60
80
100
0 2 4 6 8 10
TUNGSTEN, 10.5&3.4cm
Horizontal orientation
Vertical or ientation
E
m
itt
an
ce
B
, J
/c
m
2/
st
er
D istance X , cm
background level
0
10
20
30
40
50
0 8 16 24 32 40 48
G RAPHITE, 10.6&4 cm
Horizontal
Vertical
E
m
itt
an
ce
B
, J
/c
m
2/
st
er
Distance X, cm
B
1
B
2
b ackg round level
Fig.2. Pinhole frames of tungsten plasma radiation at λ< 1500
÷ 2000 A. Interval between next frames – 2 µs
Radiative loss measurements have been performed for two
targets: first one is of tungsten of size L×H×δ =10.6×3.4×0.3
cm and second one being of graphite with size L×H×δ =
14×4×1 cm. To evaluate optical thickness of plasma the
measurements have been carried out with vertical and
horizontal orientation of a target. Horizontal orientation means
that a target is viewed by calorimeter along short side (H=3.4
cm – for tungsten; H=4 cm – for graphite); vertical orientation
– along long side. Horizontal orientation is standard one. In this
case peripheral regions of emitting plasma column – that have
radiative properties different from central region’s ones – are
out of calorimeter sight. We’ll use results of measurements
with vertical orientation for rough estimation of optical
thickness of radiating column only. Actually, if plasma is
optically thick, plasma column emittance doesn’t depend on
column length along view axis. If plasma is optically thin, then
plasma emittance is proportional to plasma length. In other
terms: 1≈verticalhoriz BB - for optically thick plasma;
21≈≈ DHBB verticalhoriz - for optically thin plasma.
Results of calorimetric measurements for tungsten and
graphite are shown in Fig.3 and 4 respectively.
Fig.3. Plasma column emittance spatial distribution along a
distance from tungsten target
For tungsten target an emittance profile is sharply peaked
close to the surface. Taking into account that background level
is B0 = 5 J/(cm2⋅ster), one may conclude that the profile half-
width is ∆X= 1.5 cm and maximal magnitude is (B – B0) = 85
J/(cm2⋅ster) at X≈0. In space region X > 8 cm radiation is
practically absent. From analysis both target orientation a
conclusion can be drawn that at a distance X < 2 cm plasma
layer is optically thick and at a distance X > 2 cm it is optically
thin. Notice that such an estimation of optical thickness doesn’t
relate to each spectral region, but to whole spectrum only, or,
in other words, it is effective optical thickness.
Emittance profile for graphite plasma proves to have a
similar shape – maximum is near surface, emittance decreases
with a distance as well. But the rate of fall is much less. One
can see that at a distance X < 8 cm there is a large scatter in
data. Nevertheless, almost all experimental points lie closely
along two curves. It prompts to the conclusion that there are
two different regimes of plasma column emission: type 1
(lower curve) and type 2 (upper curve). It seems reasonable to
assume that type 1 and type 2 distinct from each other
according to high Z impurities. Type 1 seems to correspond to
“rather clear” plasma in plasma column. Type 2 is likely to
match a shot when plasma column contains impurity ions.
Scenario for impurity appearance could be the following. In a
certain shot, plasma stream touches conical part of drift tube of
stainless steel. It results in vaporisation of some mass of high Z
materials (iron, nickel, etc.) and subsequent vapour deposition
on exposed surface of a target. In subsequent shots high Z ions
give significant contribution into plasma column emittance if a
target is made of low Z materials, for example, of graphite. It
will continue until a target surface is gradually cleaned by
plasma exposure. Since this moment till next touch only
radiation of target plasma itself will be visible.
Fig.4. Plasma column emittance spatial distribution along a
distance from graphite target
In a “pure” regime a peak of emittance is (B – B0) ≈ 18
J/(cm2⋅ster), in second regime it is (B – B0) ≈ 40 J/(cm2⋅ster).
Curves for both regimes have half-width of ∆X= 8 cm. At a
distance X > 10 cm the curves coincide. This peculiarity is
consistent well with suggested interpretation of experimental
data. Comparing two target orientations one can conclude that
plasma column is optically thick for X < 5 cm and optically
thin for X > 10 cm. At a distance X> 10 cm plasma column is
likely to consist of carbon and hydrogen plasmas only. In wide
spatial region 15 cm < X < 35 cm plasma column emittance
remains practically unaltered (B – B0) ≈ 2 ÷ 3 J/(cm2⋅ster). An
emittance obtained at a distance X> 40 cm is not quite correct,
because for these measurements a target has to be positioned
into region of magnetic field attenuation
Using emittance data and optical thickness estimations one
can calculate specific radiative loss of plasma column (i.e. loss
per column cross section unit). For tungsten it proves to be of
0.9 ÷ 1 kJ/cm2. It means that an efficiency of plasma stream
energy transformation into VUV radiation is about unity. For
graphite target relevant radiative loss are of 0.6 ÷ 0.7 kJ/cm2
for “pure” regime and of 1 ÷ 1.1 kJ/cm2 for another regime.
These values are obtained by integrating over X from zero to
40 cm, i.e. over the range where reliable data on plasma
emittance exist. Hence an efficiency of energy conversion is
rather large (50% ÷ 90%) for graphite as well.
Spectral measurements indicate that plasma near graphite
target consist mainly of carbon ions C4+, C5+ (and perhaps C6+).
Resonant lines CV 40.3A (1s2-1s2p) и CVI 33.7A (1s-2p) are
dominant in a spectrum. This peculiarity is most pronounced at
a large distance from a target (see, for instance, Fig.5 for X=38
cm). The C4+ ion line is prevalent at a distance X< 5; the C5+
ion line is dominating at a distance X> 5 cm (Fig.6). There is
no evidence of C3+ ion lines existence even in the vicinity of
the graphite target. Along with characteristic narrow distinct
lines of carbon ions a considerable radiation at wavelength 165
÷ 220A are clearly seen in some spectra detected. This
radiation is likely to belong to iron ions Fe IIV – Fe IX lines
and it is apt to correspond to second regime of plasma column
emission. The fact that a peak of radiation is situated close to
target surface (see Fig.6) proves the assumption.
#1 #4
#8 #5
tungsten
target
plasma
stream
99
0
50
100
150
200
0 50 100 150 200 250 300 350 400
st1707#2; frame #6; 786th p ixel
R
el
at
. u
ni
ts
Wavelength, A
Fig.5.Time-integrated spectrum at a distance of X=38 cm from
graphite target
Fig.6. Spatial distribution of plasma column radiance (in
relative units) vs. the distance from graphite target
Fig.7. Time-resolved spectrum at the moment τ≈ 16 µs at a
distance of X=2 cm from tungsten target
A spectrum of tungsten plasma at a distance X= 2 cm is
presented in Fig.7. It is time-resolved spectrum corresponding
to the moment τ≈ 16 µs from interaction onset. As distinct
from graphite plasma, high Z ions of tungsten emit radiation in
wide spectral band 30 ÷ 300A. The spectrum looks like quasi-
continuum and has two smooth maximums: around 90A and
around 190A. Region around 90A is prevailing. It should be
pointed out that at time-integrated spectral measurements at the
same distance or at time-resolved measurements at late
moments another spectral region – 160 ÷ 260A – dominates
over a spectrum. This characteristic feature of tungsten spectra
can be explained taking into account that at electron
temperatures 20 ÷ 50 eV, that are typical for plasma column
[10], a mean charge of tungsten ions changes from 10 to 17
[11]. As a consequence even small variation in plasma
temperature can lead to change in prevailing ion charge and it
can be accompanied by a transformation of emitted spectra.
Pinhole pictures and time-resolved spectra reveal the fact
that duration of intense VUV emission of target plasma is
about 25 µs what is considerable less than hydrogen stream
duration (about 40 µs). It takes place both for graphite and for
tungsten target, and so it cannot be accounted for by particular
features of space distribution of intense re-radiating regions.
Observed fall of plasma emission seems to result from a drop
of electron temperature of target plasma owing to decreasing of
rate of energy flux being transmitted from hydrogen stream to
target plasma. By the moment τ≈ 25 µs the boundary
separating retarded part of hydrogen stream from moving tail
part of the stream seems to move away from a target surface at
a distance, which is large enough for making difficulties for
energy transport from tail part to target plasma. It takes place
even for a case of graphite plasma when a target plasma
leading edge recedes from a target surface as well [12].
According to an estimation, by the moment τ = 25 µs a tail
part of plasma stream carries one-third of total stream energy.
The termination of intense VUV emission is indicative of a
drop of energy afflux into target plasma. It means that one-
third of stream energy cannot be transformed into VUV
radiation energy. Nevertheless, it seems to be quite reasonable
to talk of high – up to unity – efficiency of energy conversion
into VUV radiation. The point is that total plasma stream
energy is not a convenient quantity to be manipulated with.
Plasma stream energy is measured with calorimeter. It is
well known [13] that proper choice of calorimeter material and
its sizes provides almost net energy absorption of plasma
entering calorimeter. But there is no reliable evidence that
calorimeter can appropriately measure an energy of tail part of
plasma stream. (Measurements of moderate density plasma
stream flowing in strong magnetic field are meant here. Only
measurements of the kind are possible at MK-200UG, because
strong magnetic field is necessary for successful plasma
transportation at the facility.) It is quite reasonable to consider
that calorimeter gives underestimated magnitude of total
plasma stream energy. In a more general way, any use of
plasma stream energy must be accompanied by its slowing-
down. Under certain circumstances – when plasma motion is
quasi-1D and plasma density is not very low – plasma stream
self-retarding takes place and energy of tail part is delivered
into region of its use by electron heat conductivity. Decreasing
of electron temperature and ion directed energy along a length
of plasma flow is intrinsic to plasma stream generated by
plasma gun. Because heat conductivity changes abruptly with
electron temperature variation, only a portion of tail part
energy can be delivered into region of its use. For this reason it
would be prudent to measure plasma stream energy on the
basis of data from calorimeter. We followed this approach
throughout this paper. It hardly tends to be confusing when
kept in mind that an expression “stream energy” stands for
usable part of its energy.
4. Conclusion
Properties of VUV radiation resulting from interaction of
powerful high-temperature hydrogen plasma stream with target
of tungsten and of graphite have been investigated at MK-
200UG plasma facility. Dramatic distinction between spectra
of graphite and tungsten plasma has been discovered. But in
both cases VUV radiation plays an important part in energy
balance of plasma/surface interaction. VUV emission duration
proves to be noticeably less than plasma stream duration. This
fact can be construed on the basis of considering energy
transfer from hydrogen plasma stream to target plasma.
This work was supported in part by MINATOM RF under
contract no. 6.23.19.19.00.924 and by the Russian Foundation
for Basic Research (project no. 00-02-18028).
References
1.H. Wuerz et al., Fusion Technology, vol.32, no.1, 1997, p.45
2.V. Belanp et al., J. Nucl. Mater., 241 – 243, 1996, p.763.
3.V. Chebotarev et al., J. Nucl. Mater., 233 – 237, 1997, p.736
4.V. Kozhevin et al., Fusion Eng. Des., 28, 1993, p.157
5.J. Crawford et al., J. Nucl. Mater., 203, 1993, p.280
6.B. Kalin et al., Surface and Coatings Techn., 96, 1997, p.110
7.B. Bruntkin at al., Techniques for studying spectral and
relaxation properties of atoms and ions, M., 1990 (in Russian)
8.D. Toporkov et al., Instruments and Experimental
Techniques, vol.41, no.1, 1998, p.114
9.N. Arkhipov et al., J. Nucl. Mater., 266 – 269, 1999, p.751
10.N. Arkhipov et al., Plasma Phys. Rep., vol.24, 1998, p.340
11.H. Wuerz et al., Report FZKA 6198, 1999
12.N. Arkhipov et al., Plasma Phys. Rep., vol.25, 1999, p.236
13.N. Arkhipov et al., 3d All-Union Conference on Hot Plasma
Diagnostics, Dubna, 1983, p.98 (in Russian)
���
���
���
������
���
���
������
�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
��
��
���������������
����������������������������������
����
����
����
����
����
����
����
����
����
����
����
��������
��������
����
��������
����
��������
����
���������������������������������������
�
�
���������
�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
����
����
��������������
����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
0
1000
2000
3000
4000
5000
6000
7000
0 50 100 150 200 250 300
370R;gr"old";38;V
A
v.
co
un
ts
/p
ix
el
Wavelength (A)
References
|