Wakefield acceleration based on high power pulsed lasers and electron beams (overview)

The physical principles are considered on intense wakefields excitation in plasma and dielectric by high-power short laser pulse or by a train of electron bunches for high-gradient acceleration of charged particles with purpose to elaborate the concept of future compact accelerators for high-energ...

Full description

Saved in:
Bibliographic Details
Published in:Вопросы атомной науки и техники
Date:2006
Main Author: Onishchenko, I.N.
Format: Article
Language:English
Published: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2006
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/78571
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Wakefield acceleration based on high power pulsed lasers and electron beams (overview) / I.N. Onishchenko // Вопросы атомной науки и техники. — 2006. — № 2. — С. 17-24. — Бібліогр.: 31 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-78571
record_format dspace
spelling Onishchenko, I.N.
2015-03-19T08:01:01Z
2015-03-19T08:01:01Z
2006
Wakefield acceleration based on high power pulsed lasers and electron beams (overview) / I.N. Onishchenko // Вопросы атомной науки и техники. — 2006. — № 2. — С. 17-24. — Бібліогр.: 31 назв. — англ.
1562-6016
PACS: 41.75.Lx, 41.85.Ja, 41.60.Bq
https://nasplib.isofts.kiev.ua/handle/123456789/78571
The physical principles are considered on intense wakefields excitation in plasma and dielectric by high-power short laser pulse or by a train of electron bunches for high-gradient acceleration of charged particles with purpose to elaborate the concept of future compact accelerators for high-energy physics and high technology applications, and also for creation of contemporary short pulsed radiation sources. The results of investigations on laser’s acceleration in vacuum, electrons acceleration in plasma by high power laser pulse with obtaining beams of small angle and energy dispersion, concepts of plasma and dielectric wakefield accelerators are presented. The perspective research program of the schemes of laser/beam acceleration in plasma and dielectric is considered.
Излагаются физические принципы возбуждения интенсивных кильватерных полей в плазме и других средах мощным коротким лазерным импульсом или последовательностью релятивистских электронных сгустков для высоко-градиентного ускорения заряженных частиц с целью разработки концепции будущих компактных ускорителей для физики высоких энергий и ряда высокотехнологичных приложений, а также для создания современных коротко-импульсных источников излучения. Представлены результаты исследований по лазерному ускорению частиц в вакууме, ускорению электронов в плазме мощным лазерным импульсом и получению пучков с малым угловым и энергетическим разбросом, ускорению электронов плазменными и диэлектрическими кильватерными полями, возбуждаемыми релятивистскими электронными сгустками. Излагается перспективная программа исследований схем лазерного и пучкового ускорения в плазме и диэлектрике.
Викладені фізичні принципи збудження інтенсивних кільватерних полів у плазмі та інших середовищах потужним коротким лазерним імпульсом або послідовністю релятивістських електронних згустків для високо-градієнтного прискорення заряджених частинок з метою розробки концепції майбутніх компактних прискорювачів для фізики високих енергій і ряду високотехнологічних застосувань, а також для створення сучасних коротко-імпульсних джерел випромінювання. Представлені результати досліджень по лазерному прискоренню часток у вакуумі, прискоренню електронів у плазмі потужним лазерним імпульсом і отриманню пучків з малим кутовим і енергетичним розкидом, прискоренню електронів плазмовими та діелектричними кільватерними полями, збуджуваними релятивістськими електронними згустками. Наводиться перспективна програма досліджень схем лазерного та пучкового прискорення у плазмі і діелектрику.
Research supported by CRDF UP2-2569-KH-04 and Ukr DFFD 02.07/325.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Линейные ускорители заряженных частиц
Wakefield acceleration based on high power pulsed lasers and electron beams (overview)
Кильватерные методы ускорения, основанные на мощных импульсных лазерах и электронных пучках (обзор)
Кільватерні методи прискорення, основані на потужних імпульсних лазерах і електронних пучках (огляд)
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Wakefield acceleration based on high power pulsed lasers and electron beams (overview)
spellingShingle Wakefield acceleration based on high power pulsed lasers and electron beams (overview)
Onishchenko, I.N.
Линейные ускорители заряженных частиц
title_short Wakefield acceleration based on high power pulsed lasers and electron beams (overview)
title_full Wakefield acceleration based on high power pulsed lasers and electron beams (overview)
title_fullStr Wakefield acceleration based on high power pulsed lasers and electron beams (overview)
title_full_unstemmed Wakefield acceleration based on high power pulsed lasers and electron beams (overview)
title_sort wakefield acceleration based on high power pulsed lasers and electron beams (overview)
author Onishchenko, I.N.
author_facet Onishchenko, I.N.
topic Линейные ускорители заряженных частиц
topic_facet Линейные ускорители заряженных частиц
publishDate 2006
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Кильватерные методы ускорения, основанные на мощных импульсных лазерах и электронных пучках (обзор)
Кільватерні методи прискорення, основані на потужних імпульсних лазерах і електронних пучках (огляд)
description The physical principles are considered on intense wakefields excitation in plasma and dielectric by high-power short laser pulse or by a train of electron bunches for high-gradient acceleration of charged particles with purpose to elaborate the concept of future compact accelerators for high-energy physics and high technology applications, and also for creation of contemporary short pulsed radiation sources. The results of investigations on laser’s acceleration in vacuum, electrons acceleration in plasma by high power laser pulse with obtaining beams of small angle and energy dispersion, concepts of plasma and dielectric wakefield accelerators are presented. The perspective research program of the schemes of laser/beam acceleration in plasma and dielectric is considered. Излагаются физические принципы возбуждения интенсивных кильватерных полей в плазме и других средах мощным коротким лазерным импульсом или последовательностью релятивистских электронных сгустков для высоко-градиентного ускорения заряженных частиц с целью разработки концепции будущих компактных ускорителей для физики высоких энергий и ряда высокотехнологичных приложений, а также для создания современных коротко-импульсных источников излучения. Представлены результаты исследований по лазерному ускорению частиц в вакууме, ускорению электронов в плазме мощным лазерным импульсом и получению пучков с малым угловым и энергетическим разбросом, ускорению электронов плазменными и диэлектрическими кильватерными полями, возбуждаемыми релятивистскими электронными сгустками. Излагается перспективная программа исследований схем лазерного и пучкового ускорения в плазме и диэлектрике. Викладені фізичні принципи збудження інтенсивних кільватерних полів у плазмі та інших середовищах потужним коротким лазерним імпульсом або послідовністю релятивістських електронних згустків для високо-градієнтного прискорення заряджених частинок з метою розробки концепції майбутніх компактних прискорювачів для фізики високих енергій і ряду високотехнологічних застосувань, а також для створення сучасних коротко-імпульсних джерел випромінювання. Представлені результати досліджень по лазерному прискоренню часток у вакуумі, прискоренню електронів у плазмі потужним лазерним імпульсом і отриманню пучків з малим кутовим і енергетичним розкидом, прискоренню електронів плазмовими та діелектричними кільватерними полями, збуджуваними релятивістськими електронними згустками. Наводиться перспективна програма досліджень схем лазерного та пучкового прискорення у плазмі і діелектрику.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/78571
citation_txt Wakefield acceleration based on high power pulsed lasers and electron beams (overview) / I.N. Onishchenko // Вопросы атомной науки и техники. — 2006. — № 2. — С. 17-24. — Бібліогр.: 31 назв. — англ.
work_keys_str_mv AT onishchenkoin wakefieldaccelerationbasedonhighpowerpulsedlasersandelectronbeamsoverview
AT onishchenkoin kilʹvaternyemetodyuskoreniâosnovannyenamoŝnyhimpulʹsnyhlazerahiélektronnyhpučkahobzor
AT onishchenkoin kílʹvaternímetodipriskorennâosnovanínapotužnihímpulʹsnihlazerahíelektronnihpučkahoglâd
first_indexed 2025-11-25T00:57:21Z
last_indexed 2025-11-25T00:57:21Z
_version_ 1850500191329714176
fulltext WAKEFIELD ACCELERATION BASED ON HIGH POWER PULSED LASERS AND ELECTRON BEAMS (OVERVIEW) I.N. Onishchenko NSC KIPT, Kharkov, Ukraine E-mail: onish@kipt.kharkov.ua The physical principles are considered on intense wakefields excitation in plasma and dielectric by high-power short laser pulse or by a train of electron bunches for high-gradient acceleration of charged particles with purpose to elaborate the concept of future compact accelerators for high-energy physics and high technology applications, and also for creation of contemporary short pulsed radiation sources. The results of investigations on laser’s acceleration in vacuum, electrons acceleration in plasma by high power laser pulse with obtaining beams of small angle and en- ergy dispersion, concepts of plasma and dielectric wakefield accelerators are presented. The perspective research program of the schemes of laser/beam acceleration in plasma and dielectric is considered. PACS: 41.75.Lx, 41.85.Ja, 41.60.Bq 1. INTRODUCTION Since the previous overview [1] on the new methods of charged particles acceleration based on wakefield ex- citation many appreciable successes have been achieved. First of all it concerns precision monoenergetic bunch of accelerated electrons with a small angle dis- persion obtained at interaction of ultrashort Petawatt laser pulse with plasma [2-6]. These results promise to consider as realizable the creation of tabletop accelera- tors with accelerating field gradient of order 100 GeV/m, i.e. 3 order more comparatively to tradi- tional ones. At present a new record energy in excess of 300 MeV has been set [6] for acceleration of electrons by laser-produced plasma. Not less impressive result has been recently obtained in acceleration of electrons by plasma wakefield excited by short intense bunch in plasma column [7]. At accel- erating field gradient 27 GeV/m electrons were acceler- ated up to energy 2.7 GeV, i.e. GeV threshold is over- come in advanced acceleration method concept. Electron acceleration to GeV energy by a short high- power laser pulse in vacuum proposed in [8] seems very designing in spite of Lawson-Woodward theorem prohi- bition. Along with these frontier achievements in laborato- ries abroad there are some new results in wakefield in- vestigations carried out in NSC KIPT. In [9] beam fo- cusing with wakefield excited in plasma by a train of electron bunches is presented. Dielectric wakefield ac- celeration is investigated for waveguide approach and for resonator concept [10]. 2. HIGH POWER ELECTROMAGNETIC SOURCES FOR FUTURE ACCELERATORS Recently obtained results on high gradient accelera- tion are obtained by using ultrashort ∼ femtoseconds and high power ∼terawatts laser pulse of optical wave- lengths generated by so called T3 -laser (Terawatt Ta- ble-Top laser). It allows to solve the problem of non- reasonable growth of dimension and costs of accelera- tors for TeV-PeV energies claimed by contemporary high energy physics (e.g. LEP at CERN has diameter 27 km comparable with circle road around Paris of aver- aged diameter 31 km). These optical high power sources should substitute RF-sources of the Second World War times (magnetrons, klystrons etc.) which provide in con- ventional accelerating structures accelerating rate only 10…30 MeV/m. Compact advanced tabletop accelerating systems based on T3 lasers can be used for creation of bright sources of light and γ-ray radiation and have a practical interest for industrial applications. History of tabletop system development is the fol- lowing [11]. After a rapid increase in the 1960s with the invention of lasers, followed by the demonstration of Q switching and mode locking, the power of lasers stag- nated due to the inability to amplify ultrashort pulses without causing unwanted nonlinear effects in the opti- cal components. This difficulty was removed with the introduction of the technique of chirped pulse amplifica- tion (CPA), which took the power of tabletop lasers from the Gigawatt to the Terawatt − a jump of 3 to 4 orders of magnitude. At present there are several laboratories with tabletop laser system of power in Petawatt range – LLNL (USA), RAL (UK), JAERI (Japan). By focusing laser power on a 1 mm spot size present systems deliver focused intensities in the 1020 W/cm2 range. In the near future, CPA systems will be able to produce intensities of the order of 1022 W/cm2. As indi- cated in Fig.1, we will see a leveling off of laser intensi- ty for tabletop-size systems at 1023 W/cm2. ____________________________________________________________ PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2006. № 2. Series: Nuclear Physics Investigations (46), p.17-24. 17 Fig.1. Laser-focused intensity vs years for tabletop sys- tems In [11] technical feasibility is explored to build a large scale CPA pumped by a Megajoule system of the type of the NIF (National Ignition Facility) in the U.S. and the LMJ (Laser Megajoule) in France. Power in the zettawatt range (1021) could be produced, yielding a fo- cused intensity of 1028 W/cm2. These intensities well beyond the current intensity accessible will open up a new physical regime. Direct applications of zetawatt lasers in fundamental physics envelope the following areas: ♦Direct electron acceleration. There are many instances that break the Lawson-Woodward theorem which pro- hibits any overall acceleration for fully oscillatory elec- tromagnetic waves in vacuum in infinite space. For ex- ample, it may be possible in extreme relativistic regime that electrons are accelerated to very high energy, im- mediately reaching the speed of light and becoming in phase with the photon over a sufficiently long distance, so that by the time they become dephased, the electro- magnetic wave may decay away for some reason, such as by radiative decay or pump depletion Thus it is possi- ble to see electrons at energies of up to ∼100 TeV at the laser intensity of 1026 W/cm2 and even up to ∼10 PeV at 1028 W/cm2. The accelerating gradient is 200 TeV/cm and 2 PeV/cm, respectively. Note that such energies (100 TeV and 10 PeV) if collided, correspond to 1019 and 1023 eV for fixed target experiments. These energies rival or exceed those of the highest energy cosmic rays, which are observed up to 3×1020 eV. Perhaps the present extreme parameters in the energy frontier may herald some new phenomena. One such example may be the test of Lorentz invariance [12] in extreme high energies. ♦Direct baryon acceleration. Early Petawatt Laser ex- periment [13] showed that protons have been accelerat- ed much beyond a megaelectron volt. About 10% of laser energy (300 J) was converted into proton energy − 30 J (beyond 1 MeV). The main mechanism of laser proton acceleration in the this experiment is due to the space charge set up by energetic electrons that are driv- en forward away from the back surface of the target slab. In simulation [14] it was shown that at a laser in- tensity of I=1023 W/cm2, protons are accelerated beyond a gigaelectron volt. If this process of proton acceleration scales with the intensity, we may be able to see 100 GeV protons and 10 TeV at I=1026 and 1028 W/cm2, respectively. For the case 1028 W/cm2 about 1011 protons should be accelerated beyond 10 GeV. However, it may also be possible that this process is now due directly to the photon pressure beyond the intensity regime of I=1024 W/cm2. The energy expected through this mecha- nism is about the same as that through the space charge mechanism. ♦Fast ignition fusion. The concept of fast ignition in laser-driven inertial fusion [15] concludes to separate the roles of lasers into two functions: one to compress the fuel with the least amount of entropy increase so that the fusion fuel is compressed to a highest density with the least amount of laser energy, and the other is to heat the fuel to the thermonuclear ignition temperature (∼ 10 keV) when the main compression is achieved. In- stead of required [15] laser beam of ∼10 psec duration the intensity 1020 W/cm2 to be absorbed at the critical density ∼1021…1022 cm-3, creating a beam of electrons in the several MeV range, authors of [11] suggest that an alternative method of fast ignition by a much shorter- pulse laser (10 fs, 1025 W/cm2 ). Since the resonance fre- quency reduces inversely proportional to √ne, the reso- nance density becomes on the order of 1025 cm-3, a very close proximity of the fully compressed fuel. This way allows avoiding the difficult and long energy transport of the electron beam from the density region of < 1022 cm-3 to 1026 cm-3. ♦Gamma ray emission. Although the well-known Bremsstrahlung x rays (and gamma rays) by electrons through the collision with nuclei are expected to remain important, the Larmor radiation is the most intense in the extreme relativistic regime among all radiation mechanisms through the interaction with matter (in this case free electrons). In addition, gamma rays of nuclear origin are also expected. When an intense laser is direct- ed at a high-energy electron beam, the well-known ener- gy enhancement of the laser photon happens by the fac- tor γ2 or up to the electron energy itself through Comp- ton scattering. ♦Superhot matter. Intense laser pulse may be nearly to- tally absorbed by only several of atomic clasters [16]. Moreover the chaos of electron orbits sets in within a few femtoseconds, thus making the absorption of the laser ultrafast. Further, upon removal of electrons from the claster, ions of the cluster Coulomb explode, gaining a large fraction of electron energy. If we arrange matter in such a way as to absorb nearly all laser energy over the thickness of a few microns on a (1 µ)2 spot, the aver- age energy per particle is approximately 102 and 104GeV, at I=1026 and 1028 W/cm2, respectively. Such superhot matter is expected to generate copious positrons through the Breit-Wheeler process and per- haps other nonlinear quantum electrodynamic (QED) processes. ♦Nuclear reactions. A large number of nuclear excita- tions is expected, i.e. nuclear transmutations through generated gamma rays have been observed [17]. If a heavy metal is irradiated, the energy per nucleon ex- ceeds 1 GeV. It allows expecting about 107 nuclear events per laser shot, which may include such a process as quark-gluon plasma formation. 18 Either by direct baryon acceleration, or target/cluster irradiation we will access the nuclear regime of matter reminiscent of the early epoch of the big bang. ♦Nonlinear QED. Threshold of pair production derives from the simple argument that it is the field necessary for a virtual electron to gain an energy 2m0c2 during its lifetime δt, imposed by the Heisenberg uncertainty prin- ciple δt = h/m0c2, the energy gain length, and cδt is the Compton length λc. Hence, the breakdown field ES, the Schwinger field, is ES = m0c2/eλc where λc =0.386 pm, ES =2.3⋅1016 V/cm (i.e. IS =1030 W/cm2). At this field, fluctuations in vacuum are polarized by laser to yield copious pairs of real electrons and positrons. At the in- tensity 1028 W/cm2, the electric field is only an order of magnitude less than the Schwinger field. Even below the Schwinger field, the exponential tail of these fluctu- ations begins to cause copious pair productions. ♦”H orizon physics ”. The acceleration due to the elec- tric field of the laser at this intensity is huge: ae ∼1030 and 1031 cm/s2, at I = 1026 and 1028 W/cm2, respectively. According to Einstein’s equivalence principle, a particle that is accelerated feels gravity in the opposite direction of the acceleration. An observer at rest sees the horizon at infinity if there is no gravitation. On the other hand, an observer near a black hole sees the horizon at a finite distance where the gravitation diverges. Equivalently, an observer who is being accelerated (feeling immense equivalent gravity) now also sees the horizon at a finite distance. Any particle (“observer”- a wave function) that has a finite extent has one side of its wave function leaking out of the horizon. The Unruh radiation is emit- ted when this happens [18]. The Unruh temperature is about 104 and 105 eV, for I=1026 and 1028 W/cm2, re- spectively. Considered laser systems could bring many frontiers of contemporary physics, i.e., particle physics, nuclear physics, gravitational physics, nonlinear field theory, ul- trahighpressure physics, relativistic plasma and atomic physics, astrophysics, and cosmology together. 3. SUCCESSES IN NEW TRENDS OF PARTI- CLES ACCELERATION [19] Today we are launching forth into a new energy regime of the order of TeV in which profound funda- mental questions is expected to be answered on the ori- gin of mass, the predominance of matter over antimatter and the existence of supersymmetry and so on. High en- ergy ion accelerators including proton and heavy-ion colliders can reveal in-situ synthesis of the nuclear mat- ter by producing quark-gluon plasmas at the quark- hadron phase transition temperature around one-trillion Ks, which is thought as the high energy density state at 10-5 seconds after the Big Bang of our universe. High energy electron accelerators have been utilized as synchrotron light sources generating short wave- length radiations in a wide range of sciences, such as material, chemical, biological, medical and industrial sciences. Brilliant collimated X-ray radiations delivered from the third generation synchrotron light source com- posed of several GeV electron storage rings reveal to us the structure and functions of DNA and proteins in bio- logical cells. Intermediate energy ion accelerators around 1 GeV beam energy are active in therapy of can- cers as a successful medical application. As particle accelerators increased their energy fron- tier at an exponential rate as shown in the known Liv- ingston chart and enlarged their applied fields in the past century, we realize present high- energy accelera- tors become too large and costly, and possibly they ap- proach the end of the road. High energy accelerators to- day are based on high power RF technologies that accel- erate charged particles with electric fields up to 100 MV/m at most, which is the limit stably produced in metallic, electromagnetic cavities because of electrical surface heating and breakdown. As illustrated with the future linear collider beyond the TeV energy range, the overall accelerator complex will range from tens to hun- dreds of kilometers long and amount to enormous ex- penditure to build. High-energy frontier particle colliders today need a huge size and cost to be built with conventional RF ac- celerator technologies. This has been a primary motiva- tion in advanced accelerator research for more than two decades. Therefore the advanced accelerator physics and development are oriented to researches on high gra- dient particle acceleration driven by high energy density laser or particle beams as well as generation of high-in- tensity, high-quality radiation and particle beams. The outcome of the advanced accelerator research will revo- lutionize applications of particle accelerators in a wide range of sciences, not only the future high-energy physics but also material, bio-, and medical science. In the past decade the worldwide experiments of laser-plasma particle acceleration have boosted their frontier of particle beam energy and intensity. A trend in experimental results indicates a rapid increase of elec- tron energies accelerated by laser-driven plasmabased concepts, whose rate is three to four orders of magni- tude over the past ten years in coincidence with increase of the laser ponderomotive energy (Fig.2). A recent laser electron acceleration experiment carried out by us- ing 160 J, 650 fs (~250 TW) pulses at RAL demonstrat- ed the highest energy laser acceleration at the maximum energy of 350 MeV, though with 100% energy spread, whose energy spectra can be characterized by a power law rather than a Maxwellian distribution. The highest energy electrons are observed for a focused laser inten- sity of 3×1020 W/cm2. In the plasma wakefied acceleration driven by the intense electron beam, Joshi et al. carried out PWFA ex- periments at the 30 GeV SLAC FFTB electron beam with 20 mm rms bunch length, where the maximum en- ergy gain of up to 4 GeV was obtained over a 10 cm long lithium plasma, though the energy spread was 100%. This result is the first demonstration of the break- through of a GeV barrier in plasma accelerators. ____________________________________________________________ PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2006. № 2. Series: Nuclear Physics Investigations (46), p.17-24. 19 Fig.2. Evolution of the electron beam energy frontier of the RF electron accelerators (solid curve) and the maxi- mum electron energy plots achieved by the worldwide laser and plasma accelerator experiments. The arrow shows evolution of the focused laser intensities repre- sented by the ponderomotive energy, which is the parti- cle kinetic energy given by the laser field 3.1. LASER WAKEFIELD ACCELERATION (LWFA) The most prominent experimental results today [2-5] is the monoenergetic electron beam acceleration in LWFA, which were presented by Koyama (Japan), Murphy (UK), Malka (France) and Leemans (USA) in- dependently. Moreover, their beams have properties of high quality having a small normalized emittance below 1 πmm mrad and about 10 femtosecods pulse length with a charge of the order of 1 nC, making them attrac- tive as potential radiation sources for ultrafast time-re- solved studies in biology and material science as well as an injector for future FELs and linear colliders. ♦K. Koyama et al. (AIST, Japan). Ti:sapphire laser pa- rameters are: wavelength 800 nm, power 2 TW, pulse width 50 fs, focus diameter 5 µ, focus intensity 1.5× 1018 Wcm-2. Target: supersonic gas jet-gas; N2, He. Plasma density (0.4…4.4)×1020 cm-3; N2; (0.4…1.3)× 1020 cm-3; He. Results on electron beam production with energy 7 MeV and divergence angle are shown in Fig.3. Fig.3. Spectrum of accelerated electrons in [2] ♦C.D.Murphy et al. (ILC/RAL, UK). The experiment used the high-power Ti:sapphire laser system at the Rutherford Appleton Laboratory (Astra). The laser puls- es (λ=800 nm, τ=40 fs with energy approximately 0.5 J on target) were focused with an f/16.7 off-axis parabolic mirror onto the edge of a 2-mm-long supersonic jet of helium gas to produce peak intensities up to 2.5× 1018Wcm-2. The electron density (ne) as a function of backing pressure on the gas jet was determined by mea- suring the frequency shift (∆ω=ωpe) of satellites generat- ed by forward Raman scattering in the transmitted laser spectrum. The plasma density was observed to vary lin- early with backing pressure within the range ne=3× 1018…5×1019 cm-3. Electron spectra are measured using an on-axis magnetic spectrometer. Other diagnostics used included transverse imaging of the interaction, and radiochromic film stacks to measure the divergence and total number of accelerated electrons. The schematic of installation is shown in Fig.4. Fig.4. Experimental set-up With careful control of the plasma density and at a higher laser power only one very narrow single peak in the spectrum (i.e. monoenergetic electron beam was observed (Fig.5)). Fig.5. Measured electron spectrum at a density of 2× 1019 cm-3. Laser parameters: E=500 mJ, τ=40 fs, I ≈ 2.5×1018Wcm-2 ♦V.Malka et al. (Ecole Polytechnique, France). Here it was demonstrated that the quality of the electron beams can be dramatically enhanced. Within a length of 3 mm, the laser drives a plasma bubble that traps and acceler- ates plasma electrons. It leads to the generation of high- quality electron beams with 10 mrad divergence and 0.5 ±0.2 nC of charge at 170±20 MeV. From the above, it can deduced that the electron beam energy was 100 mJ. Thus, the energy conversion from the laser to the elec- tron beam was 10%. Contrary to all previous results ob- tained from laser–plasma accelerators, the electron ener- gy distribution is quasi-monoenergetic. The number of high-energy electrons (170 MeV) is increased by at least three orders of magnitude with respect to previous work. 20 This new regime was reached by using the ultrashort and ultraintense laser pulse generated in a titanium- doped sapphire, chirped pulse amplification laser sys- tem. The laser pulse had a 33±2 fs duration (FWHM), and contained 1 J of laser energy at central wavelength 820 nm. It was focused onto the edge of a 3-mm-long supersonic helium gas jet using a f/18 off-axis parabola. The diffraction-limited focal spot had a diameter of r0=21 µm at FWHM, producing a vacuum-focused laser intensity of I=3.2×1018Wcm-2. For these high laser inten- sities, the helium gas was fully ionized by the foot of the laser pulse and ionization did not play a role in the inter- action. Higher plasma density was ne =2×1019 cm-3. ♦W.P.Leemans et al. (LBNL, USA). In the works men- tioned above, however, acceleration distances (the diffrac- tion or Rayleigh length) have been severely limited by the lack of a controllable method for extending the propagation distance of the focused laser pulse. The ensuing short ac- celeration distance results in low-energy beams with 100 per cent electron energy spread, which limits potential applications. Here it was demonstrated a laser accelerator that produces electron beams with an energy spread of a few per cent, low emittance and increased energy (2× 109 electrons at 80±1.8 MeV). Bunches with energy up to 150 MeV have been observed on separate shots. Applied technique involves the use of a preformed plasma density channel to guide a relativistically intense laser, resulting in a longer propagation distance. In the channel-guided laser wakefield accelerator, the plasma channel was formed in a supersonic hydrogen gas jet by two pulses fired 500 ps before the drive pulse. The supersonic gas jet was 2.4 mm long at an atomic density of 4.5×1019 cm-3. A cylindrical filament of plas- ma was ionized by an intense (60 fs, 15 mJ) igniter pulse, collinear with the pulse that drives the plasma wave and focused at f/15 near the downstream edge of the gas jet. The plasma was subsequently heated to tens of eV by inverse bremsstrahlung, using a long (250 ps, 150 mJ) pulse incident from the side for efficient heat- ing. The resulting hot plasma filament on axis expanded outward, driving a shock wave. This shock resulted in a density depletion on axis and a nearly parabolic trans- verse density profile which was tuned by adjusting the timing and energies of the beams. The plasma wave was driven by a 500 mJ pulse of 55 fs FWHM, focused at the upstream edge of the chan- nel to an 8.5 µm FWHM spot by an f/4 off axis parabola giving an intensity of 1.1×1019Wcm-2. Propagation of the laser was monitored with a side interferometer (us- ing a 2 ω probe laser) and mode imager CCD. The elec- tron beam accelerated by the plasma wave was analyzed using an integrating current transformer (ICT), a phos- phor screen, and a magnetic spectrometer. The laser mode at the channel exit is a well defined spot of 24 mm FWHM containing 10% of the input energy. This indi- cates the effectiveness of the channel in maintaining the drive beam intensity and mode over many diffraction lengths. A high-quality electron bunch is formed when the acceleration length is matched by plasma density chang- ing to the dephasing length, and when the laser strength is such that beam loading is sufficiently strong to turn off injection after the initial bunch of electrons is load- ed. The results open the way for compact and tunable high-brightness sources of electrons and radiation. These four experiments have shown the possibility of realization high gradient of accelerating field of order 100 GeV/m. The problem is to enlarge the length of ac- celerating process and hence the final energy of acceler- ating particles. The maximal record energy at laser-plas- ma acceleration is above 300 MeV [6]. ♦ K.Krushelnick et al. (Imperial College London, UK). The experiment was performed using the Vulcan Petawatt Nd:glass laser system, which produced pulses of 160 J in a duration of τ=650 fs (FWHM). The laser was focused to a 6 µ diameter spot at the edge of a su- personic 2 mm diameter helium gas jet using an f=3 off- axis parabolic mirror. This produces peak intensities in excess of 3×1020 Wcm-2 in vacuum. Fig.6 shows three electron energy spectra observed at different electron densities, which are representative of the trend observed over the range ne=(5×1018…1.4× 1020) cm-3. The spectra have large energy spreads typical of laser-plasma interactions, although in this experiment not all the spectra are well described by a quasi- Maxwellian distribution. The spectra with the most en- ergetic electrons were more accurately described by a power law distribution. The spectrum recorded at ne =7,7×1018 cm-3 shows the highest observed electron en- ergies. The signal descends into the background at 300 MeV. The beam divergence measurements show that close to the optimum density the beam divergence was approximately 50 mrad for electrons above 1.5 MeV. Fig.6. Three example electron energy spectra observed at various background electron densities for laser in- tensity ∼3 ×1020 Wcm-2 3.2. BEAM PLASMA WAKEFIELD ACCELERA- TION (PWFA) The latest new result at SLAC [7] on electrons accel- eration in plasma wakefield excited by intense relativis- tic electron bunch is the first demonstration of the breakthrough of a GeV barrier in advanced accelerators promising to leave behind conventional coliders, e.g. ILC, before 2020 year (Fig.2). The experiment described in [7] uses an ultrarela- tivistic electron bunch to simultaneously create a plasma in lithium vapor and drive a large amplitude plasma wave. When the electron bunch enters the lithium vapor, the electric field of the leading portion of the bunch ion- ____________________________________________________________ PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2006. № 2. Series: Nuclear Physics Investigations (46), p.17-24. 21 izes the valence electron of each lithium atom in its vicinity leaving fully ionized neutral plasma for the re- mainder of the bunch. The plasma electrons are then ex- pelled from the beam volume and return one-half plas- ma period later. The returning plasma electrons form density concentrations on axis behind the bunch leading to a large accelerating field for the particles in the back of the bunch. A single 28.5 GeV bunch of 1.8×1010 electrons from the Stanford Linear Accelerator Center (SLAC) linac was compressed to the length of 12 µ (rms). There are no techniques available to time resolve the spectrum of 12 µ (40 fs) bunches; consequently, the energy changes from the plasma are measured by comparing the time integrated energy spectrum of the bunch with and with- out the plasma (Fig.7). The neutral lithium vapor is fully ionized by the large radial electric field of the com- pressed electron bunches and the plasma density is then equal to the lithium vapor density (10 cm long 2.8× 1017 atoms/cm3). The no plasma case shows the ∼1 GeV energy spread typical of the incoming compressed pulses. At right, the core of the electron bunch has lost energy driving the plasma wake while particles in the back of the bunch have been accelerated to 2.7 GeV over the maximum incoming energy. About of 7% of the bunch particles accelerated to energies higher than the maxi- mum incoming energy. Future two-bunch plasma accelerators will use one bunch to drive the wake and accelerate a second bunch with narrow energy spread. Provided the intrabunch spacing and plasma density are adjusted accordingly, the measured accelerating gradient in a twobunch scheme should continue to increase as the drive bunch length is shortened. Fig.7. Single bunch energy spectra downstream from the plasma for (a) the case of no plasma and (b) a 10 cm long 2:8×1017 e/cm3 lithium plasma This experiment has verified the dramatic increase in accelerating gradient predicted for short drive bunches and has reached several significant milestones for beam- driven plasma-wakefield accelerators: the first to oper- ate in the self-ionized regime, the first to gain more than 1 GeV energy, and the largest accelerating gradient measured to date by 2 orders of magnitude. It is a cru- cial step in the progression of plasmas from laboratory experiments to future high-energy accelerators and col- iders. 3.3. VACUUM LASER ACCELERATION (VLA) By using the definition in [8] the phase velocity was derived for focused Gaussian laser beam in vacuum and low phase velocity region with longitudinal electric field was found. Basing on this result the Capture and Acceleration Scenario (CAS) was proposed for experi- mental realization. For this powerful laser system I>2× 1017 W/cm2 (at λ=10µ), i.e. a0=eE0 /mcω>4, electron in- jector (5…15 MeV) and electron spectrometer are need- ed. Cas accelerator should produce 100 MeV at a0=10 and 2 GeV at a0=100. This result is controversial [20], because Gaussian beam is approximate representation of the field. Really this approximation contains elementary plane slow waves, which fulfill Cherenkov resonance. However Gaussian expression corresponds to parabolic approxi- mation of exact wave equation, i.e. instead of kz=((ω /c)2 – kx 2 – ky 2)1/2 it was used kzpar= ω /c – c/2ω (kx 2 – ky 2). Nevertheless many attempts have been undertaken to get round the prohibition of Lawson-Woodward theo- rem, including theory and experiments [21]. 3.4. BEAM FOCUSING BY PLASMA WAKEFIELD Theoretical and experimental investigations of fo- cusing processes during wakefield excitation in plasma by a regular sequence of relativistic electron bunches were performed [9]. In plasma along with space charge compensation and pinching of beam in self magnetic field electrons experience strong focusing by radial electric component of excited wakefield. Topography of wakefield and extent of focusing were calculated theo- retically. Experimental researches were carried out us- ing linac “LIK” and coaxial plasma gun. A sequence of bunches ((1.5…3.0)×103 bunches of electron energy 14 MeV). Was injected into plasma of length 0.5 m and electron density within the range 1011…1013 cm-3.Each bunch of length 10mm and diameter 1.4 mm contains 2 ×109 electrons. Focusing effect was observed for middle part of beam macropulse 0.5…1.0 µs that gives 2 times current on the near axis small Faraday cup. 3.5. DIELECTRIC WAKEFIELD ACCELERA- TION The main advantage of dielectric wakefield accelera- tion is multimode operation that allows to increase ac- celerating field due to its build up at many transversal modes interference resulting in picked field of enlarged amplitude. In NSC KIPT three issues arisen at intense wakefield excitation in dielectric structure were investi- gated theoretically and in experiment [10,22-25]. The wakefield in a dielectric waveguide/resonator excited by electron bunches can be enhanced by using a regular se- quence of relativistic electron bunches (multi-bunch op- eration) [26], interference of many transverse modes to enlarge peak amplitude (multi-mode operation) [27], and resonant accumulation of wakefield in a resonator resulting from many bunches (resonator concept) [28]. 22 The electron energy spectra of electron bunches for waveguide and resonator cases were measured, from which it was concluded that for an electron energy of 4.5 MeV and current 0.5 A, and dielectric length of 65 cm, the energy loss during the interaction was 12% for resonator and 3% for waveguide. Calorimeter mea- surements were found to be in agreement with results from the HF-probes and allow to determine the overall excited wakefield energy corresponds to bunches energy losses. In cooperation with NSC KIPT Marshall and Hirsh- field (Columbia and Yale Univ.,USA) are now consider the possibility of experimental realization rectangular stimulated dielectric wakefield accelerator [29]. It is possible that narrow, femtosecond duration, sheet-like bunches can be created and injected into an optical-scale dielectric-slab accelerator structure, which will allow generation therein of a very strong longitudinal accelerat- ing electric field (~1 GV/m). This dielectric wake field accelerator structure is a vacuum device that will pass a train of 30 sheet bunches having energy ~500 MeV, ap- proximately 10 μ×150 μ in transverse dimensions. The bunches are to be approximately 3.5 fsec in duration (~1 μm), each containing ~1 pC [30]. Femtosecond bunches obtained from a 500 MeV rf linac followed by a LACARA chopper were used to ex- cite the dielectric structure with drive bunches and pro- vide the energy for accelerating test bunches. The LACARA system requires a TW-level CO2 laser, but uses it only for chopping the bunch train, not for accel- eration. A schematic of this concept is shown in Fig.8. A solenoidal magnetic field of 1.7 T is used to set up a gyro-resonant interaction between the particles and the laser wave. The laser fields cause the bunch of electrons to spiral around the longitudinal axis, so that the elec- trons fall onto an annular pattern at the beamstop. The electrons intercepts the top half of the beamstop in one laser period. Thus a small hole in the beamstop will transmit a pulse of charge having duration of a few fsec, repeated every laser period (35.3 fsec) (Fig.9). It was estimated the quantity of charge in this pulse to be approximately 1 pC, derived from a 1nC mac- robunch; approximately thirty microbunches are gener- ated from each macrobunch. A microbunch transmitted through the hole in the beamstop is distorted into a rect- angular cross section shape ~35 cm downstream by a quadrupole. This rectangular cross section profile is maintained for several cm of axial travel and determines the location of the dielectric wake field structure. The longitudinal spreading of the fsec bunch due to space charge or finite emittance is not expected to broaden the bunch for a distance of at least 1m from the beamstop. Fig.8. Schematic of a LACARA-type accelerator used as a chopper for bunches obtained from a 500 MeV rf linac. The magnetic field is 1.7 T, and it uses a 5 TW circularly polarized CO2 laser Fig.9. Schematic of slab bunch within a planar optical dielectric wakefield structure A high acceleration field (~1 GeV/m) can be built up in this dielectric structure by superimposing the wake field radiation of several bunches; such a large field in a dielectric structure is thought to be possible [31] be- cause the dielectric is exposed to an intense field for only ~ 0.3 nsec. It is interesting to comment that similar acceleration gradients are expected in a practical plasma acceleration scheme that could achieve GeV energy, yet the method we describe will enjoy the higher efficiency typical of the rf linac as compared with a laser power source. 4. FRONTIER RESEARCH ON ADVANCED ACCELERATOR PHYSICS IN ASIA At present in Asia there is a growing tendency to create the frontier research field and projects studying ad- vanced accelerator physics and technology (the largest number of involved laboratories comparatively to USA and Europe). In this context in 2004 at the satellite meeting of APAC2004, Korea seven countries − Japan, Korea, China, Taiwan, India, Israel, and Ukraine (now Russia is included too) − established the Asian Ad- vanced Accelerator Community (AAAC) [19]. Ad- vanced Accelerator research and development aim at understanding the physics and developing the technolo- gies for producing high-energy and high-quality particle and radiation beams which are required for a wide range of sciences from basic sciences to applied sciences, in- cluding nuclear and particle physics, astrophysics, mate- rial and biological science, and medical and industrial applications as well. The goal of AAAC is to promote research and development of advanced accelerator physics and technology in Asia and to organize multi- national collaboration network through which we devel- op the advanced accelerator researches that test new ac- celeration concepts and/or evolve prototype accelerators on the basis of advanced concepts and technologies ac- cording to the involving subjects and their developing status. AAAC will provide an active environment for exchanging information and creative ideas, and for effi- ciently sharing resources and laboratory infrastructure essential for the proposed experiments through the col- laboration network so that the researches will make rapid progress. Under cooperation with the worldwide community of the advanced accelerator research, AAAC will contemplate aiding Asian researchers in ____________________________________________________________ PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2006. № 2. Series: Nuclear Physics Investigations (46), p.17-24. 23 creating new acceleration and radiation technologies for a wide range of sciences. Research supported by CRDF UP2-2569-KH-04 and Ukr DFFD 02.07/325. REFERENCES 1. I.N. Onishchenko. Plasma wakefields for particles acceleration and HF-generation // Problems of Atomic Science and Technology. Series: Plasma Physics. 1999, №3-4(3-4), p.189-190. 2. K. Koyama et al. AIP Conf. Proc. 2004, pp.737, 528, 3. S.P.D. Mangles, C.D. Murphy, Z. Najmudin et al. Monoenergetic beams of relativistic electrons from intense laser–plasma interactions // Nature. 2004, v.431, p.535-538. 4. C.G. R.Geddes, Cs. Toth, J.van Tilborg et al. High- quality electron beams from a laser wakefield ac- celerator using plasma-channel guiding // Nature. 2004, v.431, p.538-541. 5. J. Faure, Y. Glinec, A.Pukhov et al. A laser–plasma accelerator producing monoenergetic electron beams // Nature. 2004, v.431, p.541-544. 6. S.P.D. Mangles, B.R.Walton, M.Tzoufras et al. Electron Acceleration in Cavitated Channels Formed by a Petawatt Laser in Low-Density Plas- ma // Phys. Rev. Lett. 2005, v.94, p.245001. 7. M.J. Hogan, C.D. Barnes, C.E. Clayton et al. Multi- GeV Energy Gain in a Plasma-Wakefield Accelera- tor // Phys. Rev. Lett. 2005, v.95, p.054802-1-4. 8. P.X. Wang, Y.K. Ho et al. Characteristics of laser- driven electron acceleration in vacuum // J. Appl. Phys. 2002, v.91, p.856. 9. I. Onishchenko, Ya. Fainberg, V. Balakirev et al. Focusing of Relativistic Electron Bunches at the Wakefield Excitation in Plasma // Bulletin of the APS. 1997, v.42, №3, p.1340; Proc. of the PAC’97. 1997, v.II, p.651-653. 10. I.N. Onishchenko,V.A. Kiselev, A.F. Linnik et al. Experimental and theoretical researches of res- onator concept of dielectric wakefield accelerator // this issue, p.79-81. 11. T. Tajima, G. Mourou. Zettawatt-exawatt lasers and their applications in ultrastrong-field physics // Phys. Rev. ST- Accelerators and beams. 2002, v.5, p.031301-1-9. 12. W. Unruh // Phys. Rev. D. 1976, v.14, p.870. 13. C.I. Moore, J.P. Krauer, and D.D.Mayerhofer // Phys. Rev. Lett. 1995, v.74, p.2439. 14. T.Zh. Esirkepov, T.V. Liseikina, F. Califano et al. // JETP Lett. 1999, v.70, p.82 (in Russian). 15. M. Tabak et al. // Phys. Plasmas. 1994, v.1, p.1626. 16. Y. Kishimoto and T. Tajima. High Field Science, ed. T.Tajima, K.Mima, and H.Baldis (Kluwer, New York, 2000), p.83. 17. T.E. Cowan et al. // Phys. Rev. Lett. 2000, v.84, p.903. 18. W. Unruh // Phys. Rev. D. 1976, v.14, p.870. 19. K.Nakajima & Asian Advanced Accelerator Com- munity (AAAC) Steering Panel. “Frontier Research and Development on Advanced Accelerator Physics and Technology in Asia”. Proc. of the 9-th Plenary meeting of the Asian Committee for Future Accel- erators. 2004, p.1-24. 20. N.B. Baranova, M.O. Scalli, B. Ya.Zeldovich. Charge particles acceleration by laser beam // JETP,1994, v.105, No.5, p.469-486 (in Russian) 21. L. Shao, D. Cline, F. Zhou, TPAE047; T.Plettner, R.L.Byer, T.I.Smith et al. TOPA008. 2005 Particle Acceleration Conference, Abstract Brochure, May 16-21, 2005, Noxville, USA 22. I.N. Onishchenko, D.Yu. Sidorenko, G.V. Sot- nikov. // Phys. Rev. 2002, v.E65, p.066501-1-11. 23. N.I. Onishchenko, D.Yu. Sidorenko, G.V. Sotnikov // Ukr. Fiz. Journal. 2003, v.48, p.16. 24. V.A. Balakirev, I.N.Onishchenko, D.Yu.Sidorenko, G.V. Sotnikov. Charged Particles Accelerated by Wake Fields in a Dielectric Resonator with Excit- ing Electron Bunch Channel // Technical Phys. Lett. 2003, v.29, №7, p.589-591. 25. N.I. Onishchenko, G.V. Sotnikov. Coherent sum- mation of wake fields excited by electron bunch se- quence in planar multimode dielectric resonator // this issue, p.73-75. 26. I.N. Onishchenko, V.A. Kiseljov, A.K. Berezin et al. Proc. of the PAC, New York. 1995 (IEEE, New York, 1995), p.782 27. T.B. Zhang, J.L. Hirshfield, T.C. Marshall, B. Hafizi // Phys. Rev. 1997, E56, p.4647 28. T.C. Marshall, J.-M. Fang, J.L. Hirshfield, S.J. Park AIP Conf. Proc. 2001, №569, p.316 29. Stimulated Dielectric Wake-Field Accelerator: Elaboration of Physical Principles and Proof-of Principle Experiment. CRDF Project №UP2-2569- KH-04. 2004. 30. T.C. Marshall, C. Wang, and J.L. Hirshfield // Phys. Rev. ST- Accel. and Beams. 2001, v.4, p.121301. 31. P. Sprangle, B. Hafizi, and R.F. Hubbard // Phys. Rev. 1997, E55, p.5964-5975 КИЛЬВАТЕРНЫЕ МЕТОДЫ УСКОРЕНИЯ, ОСНОВАННЫЕ НА МОЩНЫХ ИМПУЛЬСНЫХ ЛА- ЗЕРАХ И ЭЛЕКТРОННЫХ ПУЧКАХ (ОБЗОР) И.Н. Онищенко Излагаются физические принципы возбуждения интенсивных кильватерных полей в плазме и других средах мощным коротким лазерным импульсом или последовательностью релятивистских электронных сгустков для высоко-градиентного ускорения заряженных частиц с целью разработки концепции будущих компактных ускорителей для физики высоких энергий и ряда высокотехнологичных приложений, а также для создания современных коротко-импульсных источников излучения. Представлены результаты исследо- ваний по лазерному ускорению частиц в вакууме, ускорению электронов в плазме мощным лазерным им- пульсом и получению пучков с малым угловым и энергетическим разбросом, ускорению электронов плаз- 24 менными и диэлектрическими кильватерными полями, возбуждаемыми релятивистскими электронными сгустками. Излагается перспективная программа исследований схем лазерного и пучкового ускорения в плазме и диэлектрике. КІЛЬВАТЕРНІ МЕТОДИ ПРИСКОРЕННЯ, ОСНОВАНІ НА ПОТУЖНИХ ІМПУЛЬСНИХ ЛАЗЕРАХ І ЕЛЕКТРОННИХ ПУЧКАХ (ОГЛЯД) І.М. Онищенко Викладені фізичні принципи збудження інтенсивних кільватерних полів у плазмі та інших середовищах потужним коротким лазерним імпульсом або послідовністю релятивістських електронних згустків для високо-градієнтного прискорення заряджених частинок з метою розробки концепції майбутніх компактних прискорювачів для фізики високих енергій і ряду високотехнологічних застосувань, а також для створення сучасних коротко-імпульсних джерел випромінювання. Представлені результати досліджень по лазерному прискоренню часток у вакуумі, прискоренню електронів у плазмі потужним лазерним імпульсом і отриманню пучків з малим кутовим і енергетичним розкидом, прискоренню електронів плазмовими та діелектричними кільватерними полями, збуджуваними релятивістськими електронними згустками. Наводиться перспективна програма досліджень схем лазерного та пучкового прискорення у плазмі і діелектрику. ____________________________________________________________ PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2006. № 2. Series: Nuclear Physics Investigations (46), p.17-24. 25 Кильватерные методы ускорения, основанные на мощных импульсных лазерах и электронных пучках (обзор) КільватернІ методИ ПРИскоренНя, основанІ на ПОТУЖНИХ ІмпульснИх лазерах І ЕлектроннИх пучках (оГЛЯД)