Condition of damping of anomalous radial transport, determined by ordered convective electron dynamics
It is shown, that at development of instability due to a radial gradient of density in the crossed electric and magnetic fields in nuclear fusion installations ordering convective cells can be excited. It provides anomalous particle transport. The spatial structures of these convective cells have be...
Gespeichert in:
| Datum: | 2005 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2005
|
| Schriftenreihe: | Вопросы атомной науки и техники |
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/78652 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Condition of damping of anomalous radial transport, determined by ordered convective electron dynamics / V.I. Maslov, S.V. Barchuk, V.I. Lapshin, Yu.V. Melentsov, E.D. Volkov // Вопросы атомной науки и техники. — 2005. — № 1. — С. 57-59. — Бібліогр.: 8 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-78652 |
|---|---|
| record_format |
dspace |
| spelling |
nasplib_isofts_kiev_ua-123456789-786522025-02-23T19:27:36Z Condition of damping of anomalous radial transport, determined by ordered convective electron dynamics Умова придушення аномального радіального переносу, обумовленого упорядкованою конвективною динамікою електронів Условие подавления аномального радиального переноса, определяемого упорядоченной конвективной динамикой электронов Maslov, V.I. Barchuk, S.V. Lapshin, V.I. Melentsov, Yu.V. Volkov, E.D. Basic plasma physics It is shown, that at development of instability due to a radial gradient of density in the crossed electric and magnetic fields in nuclear fusion installations ordering convective cells can be excited. It provides anomalous particle transport. The spatial structures of these convective cells have been constructed. The radial dimensions of these convective cells depend on their amplitudes and on a radial gradient of density. The convective-diffusion equation for radial dynamics of the electrons has been derived. At the certain value of the universal controlling parameter, the convective cell excitation and the anomalous radial transport are suppressed. Показано, що в пристроях КТС у схрещених електричному і магнітному полях може виникати упорядкування конвективних осередків і аномальне транспортування. Побудовано просторову структуру цих онвективних осередків. Отримано конвективно-дифузійне рівняння для радіальної динаміки електронів. При визначеному значенні контролюючого параметра збудження конвективних осередків і аномальне транспортування придушені. Показано, что в установках УТС в скрещенных электрическом и магнитном полях может возникать упорядочение конвективных ячеек и аномальный перенос. Построена пространственная структура этих конвективных ячеек. Получено конвективно-диффузионное уравнение для радиальной динамики электронов. При определенном значении контролирующего параметра возбуждение конвективных ячеек и аномальный перенос подавлены. 2005 Article Condition of damping of anomalous radial transport, determined by ordered convective electron dynamics / V.I. Maslov, S.V. Barchuk, V.I. Lapshin, Yu.V. Melentsov, E.D. Volkov // Вопросы атомной науки и техники. — 2005. — № 1. — С. 57-59. — Бібліогр.: 8 назв. — англ. 1562-6016 PACS: 52.27.Lw https://nasplib.isofts.kiev.ua/handle/123456789/78652 en Вопросы атомной науки и техники application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| language |
English |
| topic |
Basic plasma physics Basic plasma physics |
| spellingShingle |
Basic plasma physics Basic plasma physics Maslov, V.I. Barchuk, S.V. Lapshin, V.I. Melentsov, Yu.V. Volkov, E.D. Condition of damping of anomalous radial transport, determined by ordered convective electron dynamics Вопросы атомной науки и техники |
| description |
It is shown, that at development of instability due to a radial gradient of density in the crossed electric and magnetic fields in nuclear fusion installations ordering convective cells can be excited. It provides anomalous particle transport. The spatial structures of these convective cells have been constructed. The radial dimensions of these convective cells depend on their amplitudes and on a radial gradient of density. The convective-diffusion equation for radial dynamics of the electrons has been derived. At the certain value of the universal controlling parameter, the convective cell excitation and the anomalous radial transport are suppressed. |
| format |
Article |
| author |
Maslov, V.I. Barchuk, S.V. Lapshin, V.I. Melentsov, Yu.V. Volkov, E.D. |
| author_facet |
Maslov, V.I. Barchuk, S.V. Lapshin, V.I. Melentsov, Yu.V. Volkov, E.D. |
| author_sort |
Maslov, V.I. |
| title |
Condition of damping of anomalous radial transport, determined by ordered convective electron dynamics |
| title_short |
Condition of damping of anomalous radial transport, determined by ordered convective electron dynamics |
| title_full |
Condition of damping of anomalous radial transport, determined by ordered convective electron dynamics |
| title_fullStr |
Condition of damping of anomalous radial transport, determined by ordered convective electron dynamics |
| title_full_unstemmed |
Condition of damping of anomalous radial transport, determined by ordered convective electron dynamics |
| title_sort |
condition of damping of anomalous radial transport, determined by ordered convective electron dynamics |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| publishDate |
2005 |
| topic_facet |
Basic plasma physics |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/78652 |
| citation_txt |
Condition of damping of anomalous radial transport, determined by ordered convective electron dynamics / V.I. Maslov, S.V. Barchuk, V.I. Lapshin, Yu.V. Melentsov, E.D. Volkov // Вопросы атомной науки и техники. — 2005. — № 1. — С. 57-59. — Бібліогр.: 8 назв. — англ. |
| series |
Вопросы атомной науки и техники |
| work_keys_str_mv |
AT maslovvi conditionofdampingofanomalousradialtransportdeterminedbyorderedconvectiveelectrondynamics AT barchuksv conditionofdampingofanomalousradialtransportdeterminedbyorderedconvectiveelectrondynamics AT lapshinvi conditionofdampingofanomalousradialtransportdeterminedbyorderedconvectiveelectrondynamics AT melentsovyuv conditionofdampingofanomalousradialtransportdeterminedbyorderedconvectiveelectrondynamics AT volkoved conditionofdampingofanomalousradialtransportdeterminedbyorderedconvectiveelectrondynamics AT maslovvi umovapridušennâanomalʹnogoradíalʹnogoperenosuobumovlenogouporâdkovanoûkonvektivnoûdinamíkoûelektronív AT barchuksv umovapridušennâanomalʹnogoradíalʹnogoperenosuobumovlenogouporâdkovanoûkonvektivnoûdinamíkoûelektronív AT lapshinvi umovapridušennâanomalʹnogoradíalʹnogoperenosuobumovlenogouporâdkovanoûkonvektivnoûdinamíkoûelektronív AT melentsovyuv umovapridušennâanomalʹnogoradíalʹnogoperenosuobumovlenogouporâdkovanoûkonvektivnoûdinamíkoûelektronív AT volkoved umovapridušennâanomalʹnogoradíalʹnogoperenosuobumovlenogouporâdkovanoûkonvektivnoûdinamíkoûelektronív AT maslovvi usloviepodavleniâanomalʹnogoradialʹnogoperenosaopredelâemogouporâdočennojkonvektivnojdinamikojélektronov AT barchuksv usloviepodavleniâanomalʹnogoradialʹnogoperenosaopredelâemogouporâdočennojkonvektivnojdinamikojélektronov AT lapshinvi usloviepodavleniâanomalʹnogoradialʹnogoperenosaopredelâemogouporâdočennojkonvektivnojdinamikojélektronov AT melentsovyuv usloviepodavleniâanomalʹnogoradialʹnogoperenosaopredelâemogouporâdočennojkonvektivnojdinamikojélektronov AT volkoved usloviepodavleniâanomalʹnogoradialʹnogoperenosaopredelâemogouporâdočennojkonvektivnojdinamikojélektronov |
| first_indexed |
2025-11-24T16:17:43Z |
| last_indexed |
2025-11-24T16:17:43Z |
| _version_ |
1849689179596783616 |
| fulltext |
CONDITION OF DAMPING OF ANOMALOUS RADIAL TRANSPORT,
DETERMINED BY ORDERED CONVECTIVE ELECTRON DYNAMICS
V.I. Maslov, S.V. Barchuk, V.I. Lapshin, Yu.V. Melentsov1, E. D.Volkov
NSC Kharkov Institute of Physics and Technology, Kharkov 61108, Ukraine;
1Karazin Kharkov National University, Kharkov, 61108, Ukraine,
E-mail: vmaslov@kipt.kharkov.ua
It is shown, that at development of instability due to a radial gradient of density in the crossed electric and magnetic
fields in nuclear fusion installations ordering convective cells can be excited. It provides anomalous particle transport.
The spatial structures of these convective cells have been constructed. The radial dimensions of these convective cells
depend on their amplitudes and on a radial gradient of density. The convective-diffusion equation for radial dynamics of
the electrons has been derived. At the certain value of the universal controlling parameter, the convective cell excitation
and the anomalous radial transport are suppressed.
PACS: 52.27.Lw
INTRODUCTION
Anomalous plasma particle transport due to low-
frequency perturbations in the cross-field edge region of
the toroidal devices is investigated now intensively (see,
for example, [1] ). Now also the role of the electric field,
formed in nuclear fusion installations and resulting to
crossed fields, is intensively investigated. In the
laboratory experiments in crossed fields the vortex
formation in electron plasma was observed [2], in
magnetron discharge, in ECR plasma source [3], in anode
layer of the Penning discharge. The charged plasma lens,
intended for focusing of high-current ion beams, has the
same crossed configuration of fields [4] and the vortices
are formed in it. Thus, the crossed configuration of fields
also can be one of the reasons of the vortices excitation in
nuclear fusion installations.
In turbulence of small amplitudes the electron
trajectories are stochastic. At achievement of the large
amplitudes when frequency, Ω, of the electron
oscillations in the convective cell of the perturbation
exceeds the growth rate of its excitation, Ω(t)>γ, the cell
changes in its vicinity the electron density gradient ∇ne,
which strengthens the next cells. Thus on the cell
boundaries the jumps of ne(r) arise. On these jumps the
growth rates of the next cell excitation are much more
than the growth rate, determined by not perturbed ∇ne.
Thus, ordering of cells arises similar investigated in [5]. It
provides faster electron transport. In other words, the
selfconsistent excitation of the low-frequency convective
cells in the nonequilibrium plasma, drifting in crossed
electric and magnetic fields in stelarator, by a radial
gradient of density is unstable concerning occurrence of
correlations. Thus, convective-diffusion radial electron
transport and partly ordered lattice of convective cells in
space (r, z) arise.
DESCRIPTION OF EXCITATION AND
STRUCTURE OF CONVECTIVE CELLS
Let us consider development of instability of
convective electron dynamics excitation in radial electric
Eor and longitudinal magnetic H o fields in the region
of density gradient, and suppression of the anomalous
transport caused by this convective dynamics. We use
cylindrical approximation. For description of the electron
convective dynamics we use theory, developed in [6] for
plasma lens. The electron dynamics in crossed fields is
described by the equations [6-8]
d t [α−ωHe /ne]=0 , d t≡∂t V ¿
∇¿
α=1
r
∂r rV θ−
1
r
∂θ V r≈−
2 eEor
rm e ωHe
e
me ωHe
Δ¿φ
.
V ¿≈− e
me ωHe [ ez , E ro] e
me ωHe [ ez , ∇ ¿φ]≈¿
¿≈ V θoeme ωHe [ ez , ∇ ¿φ] , ∇ ¿ϕ≡ ∇ ¿φ−E ro
.
φ is the electric potential of the perturbation.
From this equation we derive similarly [6] the linear
dispersion relation, describing the instability development
1 −ω pi
2 /ω2−ω−ℓθ ωθo
−1 k−2 ℓθ /r ∂r ω pe
2 /ωHe =0
.
For mobile perturbations V ph≈V θo one can obtain
[6] ω=ωoδω , ωo=ω pi= ℓθ ωθo , δω=iγq ,
γ q≈[ω pi /2k 2ℓθ / r ∣∂r ω pe
2 /ωHe ∣]
1/2
The growth rate is proportional to ∂r no . At its
obtaining we used a validity of the inequality
E or /2π enoe ω He∣∂ r ω pe
2 /ω He∣<< me/mi .
It is fulfilled at the small ∂r no and ωHe /ω pe >> 1 .
For motionless perturbations V ph << V θo one can
obtain [6]
γ s≈ω pi
2/3 [−V θo∂r ω pe
2 /ωHe ]
1/6
,
k2=−V θo
−1∂r ω pe
2 /ωHe .
γ s is the growth rate of the motionless perturbations.
The sizes of the motionless perturbations are inversely
proportional to ∂r no .
Problems of Atomic Science and Technology. 2005. № 1. Series: Plasma Physics (10). P. 57-59 57
Let us consider the chain on θ of the mobile
convective cells. At small deviations r from r q , taking
into account the first member of E ro r /rωHe r on
δr≡r−rq , we obtain the radial size of the convective
cell - hole of the electrons
δrh≈2 [2φo /r q ωHe r q∂r E ro r /rωHe r ∣r=rq]
1 /2
.
For large amplitudes in the regions of the electron
bunches the contraflows are formed. One can show that in
the rest frame, rotated with frequency ω ph , the
electrons, trapped by the electron hole, and the electrons,
forming the electron bunch, are rotated in the opposite
directions. We obtain from the condition
δr∣φ=−φo
= δr cl the boundary of the cell - hole of the
electrons
δr=±[ 4 φφo
rq ωHe r q∂r Ero r /rωHe r ∣r=rq
δrcl
2]
1 /2
Here δr cl is the radial width of the convective cell-
bunch of the electrons.
Fig. 1. Motionless convective cells
Let us consider the convective cell with small phase
velocity V ph << V θo . All electrons overtake its. The
radial electric field, created by the convective cell is less,
than the electric field in the system, E rvEor . Then in
all system the azimuth electron velocities have an
identical sign and there are no contraflows of electrons.
The slow convective cell of the small amplitude does not
have separatrix.
We obtain the expression for electron trajectories in
the field of the chain on θ of the slow convective cells
of not large amplitudes
r=[ r s
2φo−φr /E ro∣r=rq]
1/2
This expression describes the radial position of the
electrons through φ θ , r . Also it is useful to present
the radial position of the electrons through electron
density perturbations δne θ , r
r−δne [ω Ho∂ r noe /ωHo]∣r=r q
−1
=const .
The amplitude of the radial oscillations of the electrons is
more for less ∂r noe .
The structure of the slow convective cells changes at
the large amplitudes E rvEor (see Fig. 1) [6].
Let us consider the effect ∂r noe on behavior of
cells. Finiteness of time of the convective cell
symmetrization and the reflection of resonant electrons
from convective cells - bunches result that the convective
cells are partly asymmetrical [6]. It results in formation of
Eθ and radial drift of cells. This behavior of the
convective cells has been observed in experiments [2].
The convective cells are shifted on radius together with
trapped electrons, leading to additional mechanism of
convective radial electron transport.
CONVECTIVE–DIFFUSION EQUATION
For realized now in nuclear fusion values ω pe /ωHe
and E r the parameter, determining type of excited
convective cells, is small. It means that mobile cells
should be formed. Then for finite but not so large
amplitudes the cell – holes of the electrons are formed.
Therefore, further we consider convective transport,
realized by cells - holes of the electrons.
Fig. 2. Single convective cell
At achievement of the large amplitudes there appears
ordering of cells (see Fig. 3) similar investigated in [5].
Inside borders of a cell ordered convective movement of
the electrons occurs. However, they are influenced by
environmental fields. Also it is important that amplitudes
of cells are not stationary. Instead of average noe(t,r),
which does not take into account correlations, we use four
densities of the electrons nke(t,r) average on small-scale
oscillations: n1e(t,r) (n2e(t,r)) is the average density of the
electrons, located in region 1 (see Fig. 3) in depth of a cell
on r>rv (in region 2 in depth of a cell on r<rv); n3e(t,r)
(n4e(t,r)) is the average density of the electrons, placed in
region 3 near border of a cell on r>rv (in region 4 near
border of a cell on r<rv). The importance of use of
different nke(t,r) is also determined by that angular speeds
of electron rotation inside a cell are different in
dependence on distance from its axis. Also in two central
areas of the convective cells the following processes are
still realized: plateau formation on ne r due to
difference of angular speeds of electron rotations; at
ne r jump formation at the certain moments of time in
the regions 1 and 2 there is an accelerated diffusion and
an exchange by electrons between regions 1 and 3 (factor
β ), and also between regions 2 and 4.
Fig. 3. The ordered chain of convective cells
From the above we have approximately
n1 tτ , r =1 −α n2 t , r αβ n3 t , r
3
1
2
3
4
n2 tτ , r =1 −αn1 t , r αβ n4 t , r
n3 tτ , r =αn1 t , r
β 1 −α n3 t , r−Δr 1 −β
2 [n3n4]
n4 tτ , r =αn2 t , r
β 1 −α n4 t , rΔr 1 −β
2 [n3n4 ]
α is the factor of mixing due to not ideal ordering,
influence of fluctuations, growth of amplitudes,
differences of characteristic times of the electrons. In
vicinities of cell borders ne jumps are formed. Hence, on
these ne jumps new cells with the greatest growth rates are
excited. It results in ordering of convective cells. From
these equations, entering n=n3n4 /2 ,
δn=n3−n4 , N=n1n2 /2 , δN=n1−n2 , we
derive
τ ∂t n=α N −β n −β /2 1 −α Δr∂r δn
τ ∂t δn[1 − β 1 −α ] δn=αδ N −2β 1 −α Δr∂r n
τ ∂t N=α β n− N ,
τ ∂t δN2 −α δN=αβδ n
From these equations we have similar to [5]
τ2∂t
2 δnτ ∂t [1 −β 1 −α δn−αδ N ]=
¿−2β 1 −α Δr∂r[α N−β n− β
2
1 −α Δr∂r δn]
We research the most favorable parameters when the
convective cells are not excited and anomalous transport
is suppressed. We show, that the convective cells are not
excited, if the value of the magnetic field is close to the
most favorable. So, let us consider such amplitude of the
convective cell at which the magnetic force can not trap
the electrons of the cell, rotating around its axis, on the
closed trajectory, and electrons can move across the
magnetic field. In other words, the electron bunch of the
cell can extend across the magnetic field. Thus the
electron bunch formation is stopped. Thus, from balance
of the forces providing movement of the electrons on
closed trajectories, one can find similar to [6] that if the
magnetic field is close to optimum
ωHe=4 eE ro /me r ,
the convective cells are not excited.
CONCLUSION
So, at instability development due to the radial
gradient of density in the crossed electric and magnetic
fields in nuclear fusion installations the ordering of the
convective cells can arise. It provides anomalous particle
transport. The spatial structures of these not moving and
quickly moving convective cells have been constructed. It
has been shown, that the radial dimensions of these
convective cells depend on their amplitudes and on a
radial gradient of density. The convective-diffusion
equation, describing these convective-diffusion radial
dynamics of the electrons has been derived. There is the
universal parameter, controlling the excitation of these
convective cells. At the certain value of this parameter,
the excitation of these convective cells and the anomalous
radial transport are suppressed.
The observed fingers of density can be explained
by the formation of these convective cells.
REFERENCES
1. T.S.Pedersen et al.//Plasma Phys. Cont. Fus. (38).
1996, p. 2143.
2. Y.Kiwamoto et al.//Phys. Rev. Lett. (85). 2000, p.
3173.
3. M.Kono, M.Y.Tanaka // Phys. Rev. Lett. (84). 2000,
p. 4369.
4. A.A.Goncharov et al. // Plasma Phys. Rep. (20).
1994, p. 499.
5. A.S.Bakai, Yu.S.Sigov // DAN USSR. V. 237. 1977.
P. 1326.
6. A.A.Goncharov, V.I.Maslov, I.N.Onishchenko. //
Plasma Phys. Rep. (30). 2004, p. 662.
7. V.I.Petviashvili, O.A.Pohotelov//Plasma Phys. Rep.
(12). 1986, p. 1127.
8. M.V.Nezlin, G.P.Chernikov//Plasma Phys. Rep.
(21). 1995, p. 975.
УСЛОВИЕ ПОДАВЛЕНИЯ АНОМАЛЬНОГО РАДИАЛЬНОГО ПЕРЕНОСА, ОПРЕДЕЛЯЕМОГО
УПОРЯДОЧЕННОЙ КОНВЕКТИВНОЙ ДИНАМИКОЙ ЭЛЕКТРОНОВ
В.И. Маслов, С.В. Барчук, Е.Д. Волков, В.И. Лапшин, Ю.В. Меленцов
Показано, что в установках УТС в скрещенных электрическом и магнитном полях может возникать
упорядочение конвективных ячеек и аномальный перенос. Построена пространственная структура этих
конвективных ячеек. Получено конвективно-диффузионное уравнение для радиальной динамики электронов.
При определенном значении контролирующего параметра возбуждение конвективных ячеек и аномальный
перенос подавлены.
УМОВА ПРИДУШЕННЯ АНОМАЛЬНОГО РАДІАЛЬНОГО ПЕРЕНОСУ, ОБУМОВЛЕНОГО
УПОРЯДКОВАНОЮ КОНВЕКТИВНОЮ ДИНАМІКОЮ ЕЛЕКТРОНІВ
В.І. Маслов, С.В. Барчук, Є.Д. Волков, В.І. Лапшин, Ю.В. Меленцов
Показано, що в пристроях КТС у схрещених електричному і магнітному полях може виникати
упорядкування конвективних осередків і аномальне транспортування. Побудовано просторову структуру цих
конвективних осередків. Отримано конвективно-дифузійне рівняння для радіальної динаміки електронів. При
визначеному значенні контролюючого параметра збудження конвективних осередків і аномальне
транспортування придушені.
|