The injector of high power electron linac for industrial application
In the paper the results of the experimental study on forming the electron bunches in the injector of a high current S- band linac are presented. The injector consists of a low voltage electron gun, bunching cavity and accelerating cavity. The influence of different factors on the beam spatial and e...
Збережено в:
| Опубліковано в: : | Вопросы атомной науки и техники |
|---|---|
| Дата: | 2004 |
| Автори: | , , , , , , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2004
|
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/78709 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | The injector of high power electron linac for industrial application / M.I. Ayzatsky, E.Z. Biller, A.N. Dovbnya, I.V. Khodak, V.A. Kushnir, V.V. Mitrochenko, D.L. Stepin, V.F. Zhiglo // Вопросы атомной науки и техники. — 2004. — № 1. — С. 91-93. — Бібліогр.: 5 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-78709 |
|---|---|
| record_format |
dspace |
| spelling |
Ayzatsky, M.I. Biller, E.Z. Dovbnya, A.N. Khodak, I.V. Kushnir, V.A. Mitrochenko, V.V. Stepin, D.L. Zhiglo, V.F. 2015-03-20T09:27:30Z 2015-03-20T09:27:30Z 2004 The injector of high power electron linac for industrial application / M.I. Ayzatsky, E.Z. Biller, A.N. Dovbnya, I.V. Khodak, V.A. Kushnir, V.V. Mitrochenko, D.L. Stepin, V.F. Zhiglo // Вопросы атомной науки и техники. — 2004. — № 1. — С. 91-93. — Бібліогр.: 5 назв. — англ. 1562-6016 PACS: 29.25.BX, 41.75.FR https://nasplib.isofts.kiev.ua/handle/123456789/78709 In the paper the results of the experimental study on forming the electron bunches in the injector of a high current S- band linac are presented. The injector consists of a low voltage electron gun, bunching cavity and accelerating cavity. The influence of different factors on the beam spatial and energy characteristics is analyzed. Приведено результати експериментального дослідження процесу формування електронних згустків в інжекторній системі сильнострумового технологічного прискорювача електронів дисятисантиметрового діапазону. Інжектор складається з низьковольтної електронної гармати, групувального та прискорювального резонаторів. Приведено аналіз впливу різних факторів на просторові та енергетичні характеристики пучка. Приведены результаты экспериментального исследования процесса формирования электронных сгустков в инжекторной системе сильноточного технологического ускорителя электронов десятисантиметрового диапазона. Инжектор состоит из низковольтной электронной пушки, группирующего и ускоряющего резонаторов. Приведен анализ влияния различных факторов на пространственные и энергетические характеристики пучка. en Національний науковий центр «Харківський фізико-технічний інститут» НАН України Вопросы атомной науки и техники Элементы ускорителей The injector of high power electron linac for industrial application Інжектор потужного технологічного ЛПЕ Инжектор мощного технологического ЛУЭ Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
The injector of high power electron linac for industrial application |
| spellingShingle |
The injector of high power electron linac for industrial application Ayzatsky, M.I. Biller, E.Z. Dovbnya, A.N. Khodak, I.V. Kushnir, V.A. Mitrochenko, V.V. Stepin, D.L. Zhiglo, V.F. Элементы ускорителей |
| title_short |
The injector of high power electron linac for industrial application |
| title_full |
The injector of high power electron linac for industrial application |
| title_fullStr |
The injector of high power electron linac for industrial application |
| title_full_unstemmed |
The injector of high power electron linac for industrial application |
| title_sort |
injector of high power electron linac for industrial application |
| author |
Ayzatsky, M.I. Biller, E.Z. Dovbnya, A.N. Khodak, I.V. Kushnir, V.A. Mitrochenko, V.V. Stepin, D.L. Zhiglo, V.F. |
| author_facet |
Ayzatsky, M.I. Biller, E.Z. Dovbnya, A.N. Khodak, I.V. Kushnir, V.A. Mitrochenko, V.V. Stepin, D.L. Zhiglo, V.F. |
| topic |
Элементы ускорителей |
| topic_facet |
Элементы ускорителей |
| publishDate |
2004 |
| language |
English |
| container_title |
Вопросы атомной науки и техники |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| format |
Article |
| title_alt |
Інжектор потужного технологічного ЛПЕ Инжектор мощного технологического ЛУЭ |
| description |
In the paper the results of the experimental study on forming the electron bunches in the injector of a high current S- band linac are presented. The injector consists of a low voltage electron gun, bunching cavity and accelerating cavity. The influence of different factors on the beam spatial and energy characteristics is analyzed.
Приведено результати експериментального дослідження процесу формування електронних згустків в
інжекторній системі сильнострумового технологічного прискорювача електронів дисятисантиметрового
діапазону. Інжектор складається з низьковольтної електронної гармати, групувального та прискорювального
резонаторів. Приведено аналіз впливу різних факторів на просторові та енергетичні характеристики пучка.
Приведены результаты экспериментального исследования процесса формирования электронных
сгустков в инжекторной системе сильноточного технологического ускорителя электронов десятисантиметрового диапазона. Инжектор состоит из низковольтной электронной пушки, группирующего и ускоряющего
резонаторов. Приведен анализ влияния различных факторов на пространственные и энергетические характеристики пучка.
|
| issn |
1562-6016 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/78709 |
| citation_txt |
The injector of high power electron linac for industrial application / M.I. Ayzatsky, E.Z. Biller, A.N. Dovbnya, I.V. Khodak, V.A. Kushnir, V.V. Mitrochenko, D.L. Stepin, V.F. Zhiglo // Вопросы атомной науки и техники. — 2004. — № 1. — С. 91-93. — Бібліогр.: 5 назв. — англ. |
| work_keys_str_mv |
AT ayzatskymi theinjectorofhighpowerelectronlinacforindustrialapplication AT billerez theinjectorofhighpowerelectronlinacforindustrialapplication AT dovbnyaan theinjectorofhighpowerelectronlinacforindustrialapplication AT khodakiv theinjectorofhighpowerelectronlinacforindustrialapplication AT kushnirva theinjectorofhighpowerelectronlinacforindustrialapplication AT mitrochenkovv theinjectorofhighpowerelectronlinacforindustrialapplication AT stepindl theinjectorofhighpowerelectronlinacforindustrialapplication AT zhiglovf theinjectorofhighpowerelectronlinacforindustrialapplication AT ayzatskymi ínžektorpotužnogotehnologíčnogolpe AT billerez ínžektorpotužnogotehnologíčnogolpe AT dovbnyaan ínžektorpotužnogotehnologíčnogolpe AT khodakiv ínžektorpotužnogotehnologíčnogolpe AT kushnirva ínžektorpotužnogotehnologíčnogolpe AT mitrochenkovv ínžektorpotužnogotehnologíčnogolpe AT stepindl ínžektorpotužnogotehnologíčnogolpe AT zhiglovf ínžektorpotužnogotehnologíčnogolpe AT ayzatskymi inžektormoŝnogotehnologičeskogolué AT billerez inžektormoŝnogotehnologičeskogolué AT dovbnyaan inžektormoŝnogotehnologičeskogolué AT khodakiv inžektormoŝnogotehnologičeskogolué AT kushnirva inžektormoŝnogotehnologičeskogolué AT mitrochenkovv inžektormoŝnogotehnologičeskogolué AT stepindl inžektormoŝnogotehnologičeskogolué AT zhiglovf inžektormoŝnogotehnologičeskogolué AT ayzatskymi injectorofhighpowerelectronlinacforindustrialapplication AT billerez injectorofhighpowerelectronlinacforindustrialapplication AT dovbnyaan injectorofhighpowerelectronlinacforindustrialapplication AT khodakiv injectorofhighpowerelectronlinacforindustrialapplication AT kushnirva injectorofhighpowerelectronlinacforindustrialapplication AT mitrochenkovv injectorofhighpowerelectronlinacforindustrialapplication AT stepindl injectorofhighpowerelectronlinacforindustrialapplication AT zhiglovf injectorofhighpowerelectronlinacforindustrialapplication |
| first_indexed |
2025-11-25T21:07:14Z |
| last_indexed |
2025-11-25T21:07:14Z |
| _version_ |
1850549331926450176 |
| fulltext |
THE INJECTOR OF HIGH POWER ELECTRON LINAC
FOR INDUSTRIAL APPLICATION
M.I. Ayzatsky, E.Z. Biller, A.N. Dovbnya, I.V. Khodak, V.A. Kushnir, V.V. Mitrochenko,
D.L. Stepin, V.F. Zhiglo
National Science Center “Kharkov Institute of Physics and Technology”,
Kharkov, Ukraine; E-mail: mitvic@kipt.kharkov.ua
In the paper the results of the experimental study on forming the electron bunches in the injector of a high cur-
rent S- band linac are presented. The injector consists of a low voltage electron gun, bunching cavity and accelerat-
ing cavity. The influence of different factors on the beam spatial and energy characteristics is analyzed.
PACS: 29.25.BX, 41.75.FR
1 INTRODUCTION
Injectors of powerful linear resonance electron ac-
celerators for technological applications should be easy
serviced and reliable. Therefore the injector systems
based on the low-voltage (U0 =20...30 kV) electron guns
are promising. Usage of the injector consisting of a
bunching cavity and an accelerating cavity with a strong
field can reduce influences of a space charge on bunch
formation. In the accelerating cavity besides of continu-
ation of bunch formation there is an acceleration of par-
ticles up to the energy, which provides their capture in
the accelerating section with a phase velocity equal to
the velocity of the light. The injector system, which im-
plements this principle, was created in the NSC KIPT
and has performed itself well during long term service
of the technological linac KUT [1]. Therewith the expe-
rience of the service indicated the ways of improving
the injector. To do these improvements the research of
beam dynamics in the injector was carried out with
more perfect codes than these used for development of
the injector system of the linac KUT. According to re-
search results [2], the configuration of the injector was
optimized. First of all it differs from the prototype by an
improved electron gun [3]. This gun provides a current
behind an anode of 2.3 A at a cathode voltage of –
25 kV. Besides, in the new injector the position of mag-
net gaps in focusing lenses was changed as well as the
length and geometry of a drift pipe between the second
lens and the accelerating resonator were changed to im-
prove beam transportation in the injector.
The paper presents the experimental study of beam
performance at the exit of the upgraded injector.
2. EXPERIMENTAL RESULTS
Experimental study of the injector was carried out on
a special test bench, providing RF power supply of the
resonators and power supply of the electron gun as well
as measurement of the beam characteristics. Experi-
ments consisted of two stages and included measuring
the energy spectrum and the emittance evaluating the
phase length of bunches.
At the first stage the above-mention measurements
were carried out when the bunching cavity was detuned
to decrease substantially the influence of the feedback
on a beam on bunching [4]. At the second stage the
bunching cavity was tuned more precisely on the operat-
ing frequency.
The method of evaluating the phase length of bunch-
es was based on a supposition that the phase portrait of
particles at the phase-energy plane can be represented in
the form of a line. The phase spread of particles at a giv-
en energy is substantially less than the phase length of
the bunch. The line thickness depends, in our case, only
on the energy spread that occurs due to the action of the
space charge force and the electric field force in the
bunching cavity. As it follows from the simulation re-
sults this spread is rather insignificant.
To evaluate the phase length of bunches we have
used a E010 cavity at the exit of the magnetic analyzer. It
permitted to measure the phases of the centers of parti-
cle bunches that passed through the magnetic analyzer
aperture at different magnetic field values, and thus to
plot the phase-energy relation of particles. Fig.2 shows
the measured phase-energy relation and the beam ener-
gy spectrum for one of realizations of injector perfor-
mances. The data for the plot were taken in the time
point corresponding to the middle of the current pulse.
In this case the microwave power supply was 1.26 MW,
the current at the injector output was 1.25 A.
As is seen from Fig.1, the beam has a core. The
FWHM energy spectrum is 13%, the phase length of
bunches is near 25°. Nevertheless, the beam contains the
particles with sufficiently lower energy than energy of
the core and their phases differs, at least, by 150°. Since
the accelerator is not large and the field strength in the
beginning of sections is high enough, the particle from
the bunch “tail” can lead to forming the low-energy halo
at the linac exit.
The energy spectrum width at the injector output de-
pends on the phase shift between the bunching and ac-
celerating cavities, while the output current depends
slightly on changing this parameter in wide ranges (see
Fig.2). The value of the integral energy spectrum width
was determined with taking into account the particle en-
ergy changing during transitional processes in the injec-
tor cavities.
The transversal emittance was measured by the three
gradients method. The result of quadruple scan is pre-
sented in Fig.3. A beam current at the injector output
was equal to 0.8 A in this case.
___________________________________________________________
PROBLEMS OF ATOMIC SIENCE AND TECHNOLOGY. 2004. № 1.
Series: Nuclear Physics Investigations (42), p.91-93.
91
mailto:mitvic@kipt.kharkov.ua
Fig.1. The phase-energy distribution of particles at
the injector output and the energy spectrum
Fig.2. The beam current and the integral energy
spectrum width as a function of the phase shift between
the bunching and accelerating cavities
Fig.3. The half-width of the vertical particle density
distribution as a function of the quadrupole current
The normalized emittance evaluated from the curve
in Fig.4 was 22 π⋅mm⋅mrad. It should be noted, that
with increasing the current at the injector output the
transversal emittance increases insignificantly and
equals to 30 π⋅mm⋅mrad at output current of 1.4 A. In
the course of injector testing, a beam self-bunching was
observed. The RF field in the bunching cavity was ex-
cited even if the RF power was not supplied into the
cavity from an outside source. For example for the tun-
ing condition of the bunching cavity being characteristic
for the first stage of measurement the RF power radiated
from the cavity into the RF feeding system was 0.6 W
for the injected current of 2.2 A. In this case the current
at the injector exit was only 0.88 A. To get 1.4 A of the
output current it was necessary to supply the bunching
cavity with 2.2 kW of RF power. At the next stage of re-
searches the bunching cavity was tuned closely to the
operating frequency. At this tuning condition the radiat-
ed RF power was 34 W when the supplying power from
the outside source was at last 180 W. It is obviously that
the bunching voltage excited by electrons accelerated in
the reverse direction was negligible as compared with
the bunching voltage excited by the outside source in
the both cases.
The Fig.4 and 5 show the dependences of the output
beam current and the width of the integral energy spec-
trum, respectively, as a function of the phase shift
between the bunching and accelerating cavities.
Fig.4. The output beam current v.s. the phase shift
between the bunching and accelerating cavities
Fig. 5. The width of the integral energy spectrum v.s.
the phase shift between the bunching and accelerating
cavities
One can see that there is the sharp current depen-
dence on the phase shift between the bunching and ac-
celerating cavities unlike the case of the detuned cavity.
Herein, in the case of a maximum current the energy
spread width does not differ considerably from that ob-
served under the buncher detuning. Thus, the energy
spread formation is defined mainly by the particle dy-
namics in the accelerating cavity. The beam emittance
measurements showed that for the beam current of 1.4 A
the emittance does not exceed 21 π⋅mm⋅mrad.
Fig. 6 shows the energy spread and the phase-energy
distribution of particles in the case of the accurate tun-
ing-on of the buncher. One can see that the accurate tun-
ing-on of the buncher improves the beam phase per-
formances – the interval of phases corresponding to the
FWHM energy spread of 11% is 15°.
The analysis of behaviour of an output current of the
injector within a RF pulse has not found out spurious
oscillations. Dependences of beam characteristics versus
92
a phase shift between bunching and accelerating res-
onators are rather smooth, that indicates on the absence
of instability, which could be caused by the influence of
feedback on the beam in the injector.
Fig.6. The phase-energy distribution of particles at
the injector output and the energy spectrum
After finishing the experimental investigations the
injector was installed at the accelerator [5]. The view of
the injector joined with the accelerator is shown in
Fig.7.
Fig. 7. View of the injector joined with the accelerator
The numbers in Fig. 7 denote the following: 1 - ac-
celerating section, 2 – beam current transformer, 3 – ac-
celerating resonator, 4 – second magnetic lens, 5 –
bunching resonator, 6 – first magnetic lens, 7 - ion
pump.
3. CONCLUSION
Experimental researches of the injector on the spe-
cial bench have shown that the parameters of a beam
met the requirements, specified at development and
were improved as compared to that of the prototype.
The measured and calculated data correspond to each
other.
REFERENSES
1. N.I.Aizatsky, Yu.I.Akchurin, V.A.Gurin et al.
KUT-industrial technological accelerator // Proc. of
the 14 Workshop on charged particle accelerators,
Protvino, 1994, v.4. p.259–263.
2. M.I. Ayzatsky, V.A. Kushnir, V.V. Mitrochenko et
al. Simulation of Electron Bunch Shaping and Ac-
celerating in Two-Section Technological Linac //
Problems of atomic science and technology. 2000,
№2(36), p.69-71.
3. I.V. Khodak, V.A. Kushnir, V.V. Mitrochenko et
al. Electron Gun for Technological Linear Acceler-
ator // Problems of atomic science and technology.
2000, №2 (36), p.86-88.
4. N.I. Aizatsky, A.N. Dovbnya, V.A. Kushnir et al.
Beam Self-Bunching in the Injector System of
Electron Linac // Visnyk Kharkivs’kogo Natsion-
al’nogo Universytetu, seriya Phizychna “Yadra,
chastynky, polya”, 2002, №569, is. 3/19/, p.69-73
(in Russian).
5. K.I. Antipov, M.I. Ayzatsky, Yu.I. Akchurin et al.
High-Power Electron Linac for Irradiation Applica-
tions // Proceedings of the 2001 Particle Accelera-
tor Conference, Chicago USA, 2001, p.2805-2807.
ИНЖЕКТОР МОЩНОГО ТЕХНОЛОГИЧЕСКОГО ЛУЭ
Н.И. Айзацкий, Е.З. Биллер, А.Н. Довбня, В.Ф. Жигло, В.А. Кушнир, В.В. Митроченко, Д.Л. Степин,
И.В. Ходак
Приведены результаты экспериментального исследования процесса формирования электронных
сгустков в инжекторной системе сильноточного технологического ускорителя электронов десятисантимет-
рового диапазона. Инжектор состоит из низковольтной электронной пушки, группирующего и ускоряющего
резонаторов. Приведен анализ влияния различных факторов на пространственные и энергетические характе-
ристики пучка.
ІНЖЕКТОР ПОТУЖНОГО ТЕХНОЛОГІЧНОГО ЛПЕ
М.І Айзацький, Е.З. Білер, А.М. Довбня, В.Ф. Жигло, В.А. Кушнір, В.В. Митроченко, Д.Л. Стьопін,
І.В. Ходак
Приведено результати експериментального дослідження процесу формування електронних згустків в
інжекторній системі сильнострумового технологічного прискорювача електронів дисятисантиметрового
діапазону. Інжектор складається з низьковольтної електронної гармати, групувального та прискорювального
резонаторів. Приведено аналіз впливу різних факторів на просторові та енергетичні характеристики пучка.
___________________________________________________________
PROBLEMS OF ATOMIC SIENCE AND TECHNOLOGY. 2004. № 1.
Series: Nuclear Physics Investigations (42), p.91-93.
93
1 introduction
2. Experimental results
3. conclusion
referenses
Инжектор мощного технологического ЛУЭ
Інжектор потужного технологічного ЛПЕ
|