Coherent summation of wake fields excited by an electron bunch sequence in a planar multimode dielectric resonator

The possibility of realization of resonator concept of dielectric wake field accelerator is studied. The requirements of implementation of this concept are obtained. Numerical simulations of wake field excitation in planar dielectric resonator by bunch sequence testify the obtained requirements ar...

Full description

Saved in:
Bibliographic Details
Published in:Вопросы атомной науки и техники
Date:2006
Main Authors: Onishchenko, N.I., Sotnikov, G.V.
Format: Article
Language:English
Published: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2006
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/78770
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Coherent summation of wake fields excited by an electron bunch sequence in a planar multimode dielectric resonator / N.I. Onishchenko, G.V. Sotnikov // Вопросы атомной науки и техники. — 2006. — № 2. — С. 73-75. — Бібліогр.: 5 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-78770
record_format dspace
spelling Onishchenko, N.I.
Sotnikov, G.V.
2015-03-20T20:08:02Z
2015-03-20T20:08:02Z
2006
Coherent summation of wake fields excited by an electron bunch sequence in a planar multimode dielectric resonator / N.I. Onishchenko, G.V. Sotnikov // Вопросы атомной науки и техники. — 2006. — № 2. — С. 73-75. — Бібліогр.: 5 назв. — англ.
1562-6016
PACS: 41.60.-m
https://nasplib.isofts.kiev.ua/handle/123456789/78770
The possibility of realization of resonator concept of dielectric wake field accelerator is studied. The requirements of implementation of this concept are obtained. Numerical simulations of wake field excitation in planar dielectric resonator by bunch sequence testify the obtained requirements are true.
Исследована возможность реализации концепции ускорителя на кильватерных полях в диэлектрическом резонаторе. Аналитически определены условия когерентного сложения кильватерных полей последовательности электронных сгустков. Проведенное численное моделирование подтверждает условия когерентности.
Досліджено можливість реалізації концепції прискорювача на кільватерних полях у діелектричному резонаторі. Аналітично визначені умови когерентного додавання кільватерних полів послідовності електронних згустків. Проведене чисельне моделювання підтверджує умови когерентності.
This study was supported in parts by CRDF Grant # UP2-2569-KH-04 and Ukr. DFFD 02.07/325.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Линейные ускорители заряженных частиц
Coherent summation of wake fields excited by an electron bunch sequence in a planar multimode dielectric resonator
Когерентное сложение кильватерных полей последовательности электронных сгустков в плоском многомодовом диэлектрическом резонаторе
Когерентне додавання кільватерних полів послідовності електронних згустків у плоскому многомодовому діелектричному резонаторі
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Coherent summation of wake fields excited by an electron bunch sequence in a planar multimode dielectric resonator
spellingShingle Coherent summation of wake fields excited by an electron bunch sequence in a planar multimode dielectric resonator
Onishchenko, N.I.
Sotnikov, G.V.
Линейные ускорители заряженных частиц
title_short Coherent summation of wake fields excited by an electron bunch sequence in a planar multimode dielectric resonator
title_full Coherent summation of wake fields excited by an electron bunch sequence in a planar multimode dielectric resonator
title_fullStr Coherent summation of wake fields excited by an electron bunch sequence in a planar multimode dielectric resonator
title_full_unstemmed Coherent summation of wake fields excited by an electron bunch sequence in a planar multimode dielectric resonator
title_sort coherent summation of wake fields excited by an electron bunch sequence in a planar multimode dielectric resonator
author Onishchenko, N.I.
Sotnikov, G.V.
author_facet Onishchenko, N.I.
Sotnikov, G.V.
topic Линейные ускорители заряженных частиц
topic_facet Линейные ускорители заряженных частиц
publishDate 2006
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Когерентное сложение кильватерных полей последовательности электронных сгустков в плоском многомодовом диэлектрическом резонаторе
Когерентне додавання кільватерних полів послідовності електронних згустків у плоскому многомодовому діелектричному резонаторі
description The possibility of realization of resonator concept of dielectric wake field accelerator is studied. The requirements of implementation of this concept are obtained. Numerical simulations of wake field excitation in planar dielectric resonator by bunch sequence testify the obtained requirements are true. Исследована возможность реализации концепции ускорителя на кильватерных полях в диэлектрическом резонаторе. Аналитически определены условия когерентного сложения кильватерных полей последовательности электронных сгустков. Проведенное численное моделирование подтверждает условия когерентности. Досліджено можливість реалізації концепції прискорювача на кільватерних полях у діелектричному резонаторі. Аналітично визначені умови когерентного додавання кільватерних полів послідовності електронних згустків. Проведене чисельне моделювання підтверджує умови когерентності.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/78770
citation_txt Coherent summation of wake fields excited by an electron bunch sequence in a planar multimode dielectric resonator / N.I. Onishchenko, G.V. Sotnikov // Вопросы атомной науки и техники. — 2006. — № 2. — С. 73-75. — Бібліогр.: 5 назв. — англ.
work_keys_str_mv AT onishchenkoni coherentsummationofwakefieldsexcitedbyanelectronbunchsequenceinaplanarmultimodedielectricresonator
AT sotnikovgv coherentsummationofwakefieldsexcitedbyanelectronbunchsequenceinaplanarmultimodedielectricresonator
AT onishchenkoni kogerentnoesloženiekilʹvaternyhpoleiposledovatelʹnostiélektronnyhsgustkovvploskommnogomodovomdiélektričeskomrezonatore
AT sotnikovgv kogerentnoesloženiekilʹvaternyhpoleiposledovatelʹnostiélektronnyhsgustkovvploskommnogomodovomdiélektričeskomrezonatore
AT onishchenkoni kogerentnedodavannâkílʹvaternihpolívposlídovnostíelektronnihzgustkívuploskomumnogomodovomudíelektričnomurezonatorí
AT sotnikovgv kogerentnedodavannâkílʹvaternihpolívposlídovnostíelektronnihzgustkívuploskomumnogomodovomudíelektričnomurezonatorí
first_indexed 2025-11-24T18:04:27Z
last_indexed 2025-11-24T18:04:27Z
_version_ 1850491276294619136
fulltext COHERENT SUMMATION OF WAKE FIELDS EXCITED BY AN ELECTRON BUNCH SEQUENCE IN A PLANAR MULTIMODE DIELECTRIC RESONATOR N.I. Onishchenko, G.V. Sotnikov NSC KIPT, Kharkov, Ukraine E-mail: sotnikov@kipt.kharkov.ua The possibility of realization of resonator concept of dielectric wake field accelerator is studied. The require- ments of implementation of this concept are obtained. Numerical simulations of wake field excitation in planar di- electric resonator by bunch sequence testify the obtained requirements are true. PACS: 41.60.-m 1. INTRODUCTION Historically, the most of studies on the dielectric waveguides used both for Cherenkov radiation sources and for the dielectric wake field accelerators (DWFA) is carried out for cylindrical structures. Intensity of electric fields in DWFA can be considerably increased due to coherent summation of fields of many traversal harmon- ics of a field [1]. For this purpose it is necessary to pro- vide the equal spacing of resonant eigen-frequencies of the structure. In rectangular structures [2] such mode to realize is essentially easier. The equal spacing of reso- nant frequencies is especially important at summation of fields from regular sequence of bunches. In the dielectric waveguide excited wake field is re- moved from structure with group velocity. In finite length waveguide on building up of the wake field max- imum the part of bunches of sequence works only [3]. The using of resonator eliminates effect of removing of wake field [4,5]. Under optimum conditions, excitation of dielectric resonator by a sequence of bunch is similar to the excitation of an optical resonator by a mode- locked laser equipped with an “optical switch”. At the moment when the short pulse of radiation reflected from the output of the resonator appears at the input, the opti- cal switch injects the next impulse into the resonator. Below we shall find optimum regimes of excitation of the dielectric resonator by sequence of bunches and we investigate the time dynamics of excited fields. 2. WAKE FIELD OF BUNCH TRAIN IN DI- ELECTRIC RESONATOR Let the rectangular metal resonator have a transverse size a ( / 2 / 2a x a− Ј Ј ) and b ( / 2 / 2b y b− Ј Ј ), its length equal to L . The resonator is filled with a homo- geneous dielectric with permittivity ε . Along the axis of the resonator there is a drift channel, the transverse dimensions which are small if compared with those of the resonator. We will suppose that monoenergetic, thin electron bunches are injected into the input of the res- onator 0=z and then move with a constant velocity 0v along the axis. The distribution of current density of a single bunch has the form of: ( ) ( ) ( )0 0 0 0 0 0 0 0 / [ ( ) ( / )] / , z b i i i j Q x x y y t t z v t t t t L v v δ δ δ θ θ = − − − − − − − −ґ where bQ is the charge of a bunch, 0it is the time of the i-th bunch injection into the resonator, 0 0,x y are trans- verse coordinates of a bunch, ( )tθ is the Heaviside function, ( )tδ is the Dirac function. Having solved the wave equation and taking into ac- count the vanishing of the tangential components of electric field on the metal walls of the resonator, we ob- tain the expression for the longitudinal electric field: 100 0 0 0 2 2 1 , 1 0 2 2 0 0 02 0 2 0 0 0 0 2 02 0 ( , , , ) cos( ) sin ( ) 1 sin ( ) ( ) ( 1) sin ( / ) 1 sin ( / bN l z mn l i m n mnl l l mn mnl i l l i mnl l mn i mnl i mnl l l i E E G x y x y k z ct t t t v t t t t L v c t t L v v δ ω ω ω ω ω ω ω ω ε ωθ ω ω ω ω ε Ґ = = = = − м щцй жп− − − −ґ н ъчзк п л и шо ы й − − − − − −ґ к л цж − − −чз и ш е е ] }0 0 0) ( / ) ,it t L vθ − − where: 0 0 10016 /bE Q v abLπ ε ω= − ; /lk l Lπ= , 0l lk vω = , 2 2 2 2 2( ) / xm ynmnl lc kω κ κ ε= + + , /xm m aκ π= , /yn n bκ π= , the function lδ is equal 1 if 0l = and is equal 2 if 0l № ; bN is the number of bunches in a se- quence; 0( , ) sin[ ( / 2)]m xmG x x x aκ= + ґ 0 0sin[ ( / 2)]sin[ ( / 2)]sin[ ( / 2)]xm yn ynx a y a y aκ κ κ+ + + . When all particles left the resonator ( 0 0/Nbt t L v> + ), the field of the space charge (second expression in square brackets) disappears, and the expression for the longitudinal electric field is the sum of traveling for- ward and backward eigen-waves of the dielectric res- onator: [ 100 0 0 0 2 2 1 , 1 0 2 0 0 0 0 ( , , , ) cos( ) sin ( ) ( 1) sin ( / ) . bN l z mn l i m n mnl l l lmn mnl i mnl i mnl E E G x y x y k z t t t t L v δ ω ω ω ω ω ω ω Ґ = = = = − щ− − − − −ґ ы е е We note, that for the condition mnl lω ω= the relevant items in the sum (2),(3) become dominant. This condition is nothing but the condition of Cherenkov radiation in a slowing medium. This is why these resonant items can be treated as a Cherenkov field ___________________________________________________________ PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2006. № 2. Series: Nuclear Physics Investigations (46), p.73-75. 73 accumulated in the dielectric resonator. The rest of the field is the field of the transition radiation from both boundaries. Because of the discreteness of the longitudinal wave numbers of the oscillation spectrum, the resonant condi- tion for the optiomum sizes of the resonator, permittivi- ty, and energy of the bunch can be fulfilled only approx- imately and only for a finite number of harmonics. Tak- ing into account that we want to implement a multimode condition of DWFA, it makes sense to find the relation between the above quantities from the resonant require- ment. We now find the relation for a 2-d dielectric res- onator (size in the y-direction is greater than the size in x-direction). Let the resonant condition be fulfilled for harmonic 1m = , l N= . Then for coherent summation of fields of all harmonics m k= , l kN= from expres- sion (3) we obtain 2 0 0 01, /L Na v cβ ε β= − = . Conditions (5) and (6) are the basis of the resonator concept of the dielectric wake field accelerator. In such a resonator there will occur a multimode regime of field excitation and a coherent summation of fields from the injected bunches. 3. NUMERICAL SIMULATIONS OF WAKE FIELDS BUILD UP The wakefield from a sequence of bunches of finite size is obtained by integration of expression (2) over the time of injection 0it and the locations 0x of the point bunches. We choose the following parameters for numerical calculations: dielectric permittivity 2.1ε = ; frequency of bunch repetition 2.85f = GHz; energy of the bunch- es is 4MeV; transverse size chosen according to condi- tion (6) 5,045a = cm and the length of the resonator, chosen according to requirement (5), 15.677L = cm (tenth longitudinal harmonic is chosen as resonant, 10N = ); the length of bunch 1.7bL = cm; the height of bunch 0.1ba a= ; 2 / 0.32bQ b = nC/cm. In Fig.1 the time dynamics of the wakefield ( 0x = ) at the input of the dielectric resonator after injection of a single bunch is presented, the bunch having left the res- onator at time 1.75t ≈ ns. The wake field at the input of the resonator (as well as at any spatial point inside the resonator) has a nonregular behavior in time (see the left graph), even though the peaks of the wake field follow with a period approximately equal to the period of the basic resonant mode. The longitudinal distribution of the wakefield also has a nonregular character. The envelope of the field is nonuniform along the length of the resonator. Its struc- ture varies with time; the maximum is periodically dis- placed from one wall of the resonator to another. The ir- regularity of the wake field is related to the excitation by a single bunch of set of nonresonant longitudinal har- monics. These nonresonant harmonics can be attributed to the transition radiation [3], which has a wide spec- trum. This is verified by the spectral density of the lon- gitudinal electric field given in right part of Fig.1. In this graph the peaks of spectral density corresponding to the excited longitudinal harmonics of the field are clear- ly visible. 19,5 20,2 20,9 21,6 22,3 -3 -2 -1 0 1 2 3 E z , kV/cm t, ns 2,9 14,3 25,6 37,0 48,4 59,8 0,0 0,1 0,2 0,3 Ez, kV/cm/GHz 1,71 2,28 2,85 3,42 3,99 0,0 0,1 0,2 0,3 fm, GHz Fig.1. Time dependence of longitudinal electric field at the input of the dielectric resonator and its spec- tral density after injection of a single bunch In Fig.2 the axial distributions of wakefield build up by injecting a sequence of 101 bunches into resonator is presented: the top figure corresponds to the time 1.738t = ns (the first 5 bunches are injected into the res- onator) and the down figure corresponds to the time 35.639t = ns (when the last bunch of the sequence is injected into the resonator). I 0 10 20 30 40 50 -3 -2 -1 0 1 2 3 z, cm Ez, kV/cm 0 10 20 30 40 50 -80 -60 -40 -20 0 20 40 60 80 E z , kV/cm z, cm Fig.2. Axial distributions of wake field in the centre of resonator ( 0x = ) when injecting a train of bunches. Dashed lines show the location of bunches At the initial stage, the amplitude of the field grows from the head of a sequence of the bunches to the loca- tion of the group wave front, excited by the first bunch, and then decreases backwards to the input of the res- onator. The wakefield in the resonator before the first bunch leaves is qualitatively and quantitatively the same as the field in a semi-infinite waveguide. The shape of the wake field impulses and their duration approximate- 74 ly repeats the shape and duration of bunches. At later times, after all bunches have been injected into the res- onator, a nearly homogeneous distribution of field am- plitude is formed. I 50,00 50,71 51,42 52,13 52,84 53,55 -80 -40 0 40 80 t, ns Ez, kV/cm 2,9 14,3 25,6 37,0 48,4 59,8 0 10 20 30 Ez, kV/cm/GHz 1,71 2,28 2,85 3,42 3,99 0 10 20 30 f m , GHz Fig.3. Time dependence (left) of the longitudinal electric field and its spectral density (right) in the di- electric resonator after injection of 101 bunches The case in the semi-infinite waveguide in contrast to the resonator with regard to the increasing input to output distribution of field amplitude [3] is formed. The number of bunches participating in the build up to maxi- mum amplitude is much lower, compared with the res- onator. For a dielectric waveguide having the same length, transverse size and permittivity as the resonator, this number of bunches is equal 6. By comparison of the top and down graphs of Fig.2 we conclude that all bunches of the sequence equally contribute to the for- mation of the longitudinal electric field amplitude in resonator: i.e., it is possible to excite a wakefield in the resonator with the amplitude considerably exceeding the amplitude of the field in the semi-infinite waveguide. The regularity of the oscillations is maintained. We now show the mode-locking from the excitation of the dielectric resonator by a sequence of electron bunches. For this purpose we shall compare the tempo- ral dynamics of the longitudinal electric field at a fixed point of the resonator when the field is excited by a sin- gle bunch and by a train of 101 bunches. In Fig.3 (top part), the time dependence of the longitudinal electric field at the input end of the resonator is presented. The last bunch has left the resonator at time 38t ≈ ns. The wakefield at the input of the resonator has a pattern of a sequence of rectangular pulses with period equal to the period of the bunch repetition rate. The amplitude of the pulses varies weakly with time. At the down side of Fig.3 the spectrum of the longitudinal electric field is presented. It is seen that wakefield contains only odd resonant frequencies. Non-resonant harmonics con- tribute very little to the amplitude of the wakefield. We now compare this spectral density with the spec- tral density of the field, excited by a single bunch (see Fig.1). It is seen that a train of bunches regularizes the wake field, suppresses non-resonant longitudinal har- monics and strengthens the resonant harmonics of a field. In other words, the regular sequence of bunches realizes mode-locking of the dielectric resonator. This study was supported in parts by CRDF Grant # UP2-2569-KH-04 and Ukr. DFFD 02.07/325. REFERENCES 1. T.B. Zhang, J.L. Hirshfield, T.C. Marshal, B. Hafizi. Stimulated dielectric wake-field accelera- tor // Phys. Rev. 1997, v.E 56, p.4647-4655. 2. T.C. Marshal, C. Wang, J.L. Hirshfield. Fem-tosec- ond planar electron beam source for micron-scale dielectric wake field accelerator // Phys. Rev. 2001, STAB 4, 121301, p.1-7. 3. V.A. Balakirev, I.N. Onishchenko, D.Yu. Sidorenko, G.V. Sotnikov. Excitation of a wake field by a rela- tivistic electron bunch in a semi-infinite dielectric waveguide // Zh. Eksp. Teor. Fiz. 2001, v.93, p.33- 42. 4. T.C. Marshall, J-.M. Fang, J.L. Hirshfield, S.J. Park. Multi-mode, multi-bunch dielectric wake- field resonator accelerator. AIP Conf. Proc. 2001, №569, p.316. 5. V.A. Balakirev, I.N. Onishchenko, D.Yu. Sidorenko, G.V. Sotnikov. Charged Particles Accelerated by Wake Fields in a Dielectric Resonator with Excit- ing Electron Bunch Channel // Pisma v Zh. Tekh. Fiz. 2003, 29, p.39-45 (in Russian). КОГЕРЕНТНОЕ СЛОЖЕНИЕ КИЛЬВАТЕРНЫХ ПОЛЕЙ ПОСЛЕДОВАТЕЛЬНОСТИ ЭЛЕКТРОН- НЫХ СГУСТКОВ В ПЛОСКОМ МНОГОМОДОВОМ ДИЭЛЕКТРИЧЕСКОМ РЕЗОНАТОРЕ Н.И. Онищенко, Г.В. Сотников Исследована возможность реализации концепции ускорителя на кильватерных полях в диэлектрическом резонаторе. Аналитически определены условия когерентного сложения кильватерных полей последователь- ности электронных сгустков. Проведенное численное моделирование подтверждает условия когерентности. КОГЕРЕНТНЕ ДОДАВАННЯ КІЛЬВАТЕРНИХ ПОЛІВ ПОСЛІДОВНОСТІ ЕЛЕКТРОННИХ ЗГУСТКІВ У ПЛОСКОМУ МНОГОМОДОВОМУ ДІЕЛЕКТРИЧНОМУ РЕЗОНАТОРІ М.І. Оніщенко, Г.В. Сотніков Досліджено можливість реалізації концепції прискорювача на кільватерних полях у діелектричному резонаторі. Аналітично визначені умови когерентного додавання кільватерних полів послідовності електронних згустків. Проведене чисельне моделювання підтверджує умови когерентності. ___________________________________________________________ PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2006. № 2. Series: Nuclear Physics Investigations (46), p.73-75. 73 КОГЕРЕНТНОЕ СЛОЖЕНИЕ КИЛЬВАТЕРНЫХ ПОЛЕЙ ПОСЛЕДОВАТЕЛЬНОСТИ ЭЛЕКТРОННЫХ СГУСТКОВ В ПЛОСКОМ МНОГОМОДОВОМ ДИЭЛЕКТРИЧЕСКОМ РЕЗОНАТОРЕ КОГЕРЕНТНЕ ДОДАВАННЯ КІЛЬВАТЕРНИХ ПОЛІВ ПОСЛІДОВНОСТІ ЕЛЕКТРОННИХ ЗГУСТКІВ У ПЛоСКОМУ МНОГОМОДОВОМУ ДІЕЛЕКТРИЧНОМУ РЕЗОНАТОРІ