On transversal instability of beam in powerful S-band linear electron accelerators

High pulse current of electrons in a linear resonance accelerator assists the increase of overall efficiency of the facility. At the same time, there is a danger of development of transversal instability of a beam (BBU), especially in linacs consisting of a few accelerating sections. In the paper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Вопросы атомной науки и техники
Datum:2006
Hauptverfasser: Aizatsky, M.I., Kramarenko, E.U., Khodak, I.V., Kushnir, V.A., Mytrochenko, V.V., Perezhogin, S.A.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2006
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/78876
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:On transversal instability of beam in powerful S-band linear electron accelerators / M.I. Aizatsky, E.U. Kramarenko, I.V. Khodak, V.A. Kushnir, V.V. Mytrochenko, S.A. Perezhogin // Вопросы атомной науки и техники. — 2006. — № 2. — С. 131-133. — Бібліогр.: 4 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-78876
record_format dspace
spelling Aizatsky, M.I.
Kramarenko, E.U.
Khodak, I.V.
Kushnir, V.A.
Mytrochenko, V.V.
Perezhogin, S.A.
2015-03-22T09:12:58Z
2015-03-22T09:12:58Z
2006
On transversal instability of beam in powerful S-band linear electron accelerators / M.I. Aizatsky, E.U. Kramarenko, I.V. Khodak, V.A. Kushnir, V.V. Mytrochenko, S.A. Perezhogin // Вопросы атомной науки и техники. — 2006. — № 2. — С. 131-133. — Бібліогр.: 4 назв. — англ.
1562-6016
PACS: 41.20.Jb, 41.75.Fr
https://nasplib.isofts.kiev.ua/handle/123456789/78876
High pulse current of electrons in a linear resonance accelerator assists the increase of overall efficiency of the facility. At the same time, there is a danger of development of transversal instability of a beam (BBU), especially in linacs consisting of a few accelerating sections. In the paper the method of calculation of starting current of regenerative BBU instability in the tapered disc loaded waveguides is presented as well as simulation results of BBU buildup in the linac consisting of a few accelerating sections.
Приведены методика расчета порогового тока регенеративной поперечной неустойчивости в неоднородных цилиндрических диафрагмированных волноводах и результаты моделирования развития поперечной неустойчивости в ускорителе, состоящем из нескольких ускоряющих секций.
Приведено методику розрахунку стартового струму регенеративної поперечної нестійкості в неоднорідних циліндричних діафрагмованих хвилеводах та результати моделювання розвитку поперечної нестійкості в прискорювачі, що складається з декількох прискорювальних секцій.
The work was partially supported through the STCU grant #3151.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Линейные ускорители заряженных частиц
On transversal instability of beam in powerful S-band linear electron accelerators
Моделирование поперечной неустойчивости пучка в мощных линейных ускорителях электронов
Моделювання поперечної нестійкості пучка в потужних лінійних прискорювачах електронів
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title On transversal instability of beam in powerful S-band linear electron accelerators
spellingShingle On transversal instability of beam in powerful S-band linear electron accelerators
Aizatsky, M.I.
Kramarenko, E.U.
Khodak, I.V.
Kushnir, V.A.
Mytrochenko, V.V.
Perezhogin, S.A.
Линейные ускорители заряженных частиц
title_short On transversal instability of beam in powerful S-band linear electron accelerators
title_full On transversal instability of beam in powerful S-band linear electron accelerators
title_fullStr On transversal instability of beam in powerful S-band linear electron accelerators
title_full_unstemmed On transversal instability of beam in powerful S-band linear electron accelerators
title_sort on transversal instability of beam in powerful s-band linear electron accelerators
author Aizatsky, M.I.
Kramarenko, E.U.
Khodak, I.V.
Kushnir, V.A.
Mytrochenko, V.V.
Perezhogin, S.A.
author_facet Aizatsky, M.I.
Kramarenko, E.U.
Khodak, I.V.
Kushnir, V.A.
Mytrochenko, V.V.
Perezhogin, S.A.
topic Линейные ускорители заряженных частиц
topic_facet Линейные ускорители заряженных частиц
publishDate 2006
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Моделирование поперечной неустойчивости пучка в мощных линейных ускорителях электронов
Моделювання поперечної нестійкості пучка в потужних лінійних прискорювачах електронів
description High pulse current of electrons in a linear resonance accelerator assists the increase of overall efficiency of the facility. At the same time, there is a danger of development of transversal instability of a beam (BBU), especially in linacs consisting of a few accelerating sections. In the paper the method of calculation of starting current of regenerative BBU instability in the tapered disc loaded waveguides is presented as well as simulation results of BBU buildup in the linac consisting of a few accelerating sections. Приведены методика расчета порогового тока регенеративной поперечной неустойчивости в неоднородных цилиндрических диафрагмированных волноводах и результаты моделирования развития поперечной неустойчивости в ускорителе, состоящем из нескольких ускоряющих секций. Приведено методику розрахунку стартового струму регенеративної поперечної нестійкості в неоднорідних циліндричних діафрагмованих хвилеводах та результати моделювання розвитку поперечної нестійкості в прискорювачі, що складається з декількох прискорювальних секцій.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/78876
citation_txt On transversal instability of beam in powerful S-band linear electron accelerators / M.I. Aizatsky, E.U. Kramarenko, I.V. Khodak, V.A. Kushnir, V.V. Mytrochenko, S.A. Perezhogin // Вопросы атомной науки и техники. — 2006. — № 2. — С. 131-133. — Бібліогр.: 4 назв. — англ.
work_keys_str_mv AT aizatskymi ontransversalinstabilityofbeaminpowerfulsbandlinearelectronaccelerators
AT kramarenkoeu ontransversalinstabilityofbeaminpowerfulsbandlinearelectronaccelerators
AT khodakiv ontransversalinstabilityofbeaminpowerfulsbandlinearelectronaccelerators
AT kushnirva ontransversalinstabilityofbeaminpowerfulsbandlinearelectronaccelerators
AT mytrochenkovv ontransversalinstabilityofbeaminpowerfulsbandlinearelectronaccelerators
AT perezhoginsa ontransversalinstabilityofbeaminpowerfulsbandlinearelectronaccelerators
AT aizatskymi modelirovaniepoperečnoineustoičivostipučkavmoŝnyhlineinyhuskoritelâhélektronov
AT kramarenkoeu modelirovaniepoperečnoineustoičivostipučkavmoŝnyhlineinyhuskoritelâhélektronov
AT khodakiv modelirovaniepoperečnoineustoičivostipučkavmoŝnyhlineinyhuskoritelâhélektronov
AT kushnirva modelirovaniepoperečnoineustoičivostipučkavmoŝnyhlineinyhuskoritelâhélektronov
AT mytrochenkovv modelirovaniepoperečnoineustoičivostipučkavmoŝnyhlineinyhuskoritelâhélektronov
AT perezhoginsa modelirovaniepoperečnoineustoičivostipučkavmoŝnyhlineinyhuskoritelâhélektronov
AT aizatskymi modelûvannâpoperečnoínestíikostípučkavpotužnihlíníinihpriskorûvačahelektronív
AT kramarenkoeu modelûvannâpoperečnoínestíikostípučkavpotužnihlíníinihpriskorûvačahelektronív
AT khodakiv modelûvannâpoperečnoínestíikostípučkavpotužnihlíníinihpriskorûvačahelektronív
AT kushnirva modelûvannâpoperečnoínestíikostípučkavpotužnihlíníinihpriskorûvačahelektronív
AT mytrochenkovv modelûvannâpoperečnoínestíikostípučkavpotužnihlíníinihpriskorûvačahelektronív
AT perezhoginsa modelûvannâpoperečnoínestíikostípučkavpotužnihlíníinihpriskorûvačahelektronív
first_indexed 2025-11-24T19:48:20Z
last_indexed 2025-11-24T19:48:20Z
_version_ 1850494675272597504
fulltext ON TRANSVERSAL INSTABILITY OF BEAM IN POWERFUL S-BAND LINEAR ELECTRON ACCELERATORS M.I. Aizatsky, E.U. Kramarenko, I.V. Khodak, V.A. Kushnir, V.V. Mytrochenko, S.A. Perezhogin NSC KIPT, Kharkov, Ukraine E-mail: ayzatsky@kipt.kharkov.ua High pulse current of electrons in a linear resonance accelerator assists the increase of overall efficiency of the facility. At the same time, there is a danger of development of transversal instability of a beam (BBU), especially in linacs consisting of a few accelerating sections. In the paper the method of calculation of starting current of regener- ative BBU instability in the tapered disc loaded waveguides is presented as well as simulation results of BBU build- up in the linac consisting of a few accelerating sections. PACS: 41.20.Jb, 41.75.Fr 1. INTRODUCTION Phenomena of beam pulse shortening occurring in power linear electron accelerators (linacs) were discov- ered in the middle of the past century [1]. Some late analogous phenomena came out during commissioning of multi-sectional high-energy linacs [1,2]. Extensive researches on the problem have shown that such effect is caused by beam-excited waves (mostly E11 like wave) propagated in the higher pass bands of the disk-loaded waveguide (DLW). At some condition interaction be- tween beam and waves causes exponential growth of transversal oscillations of the particles until they hit into the linac walls. Occurrence of such phenomenon in linacs consisting of just one accelerating section is called as regenerative BBU in contradistinction to cu- mulative BBU that is characteristic for multisectional linacs. Although BBU has rather long history of study there is no cardinal solution for its complete suppression till now. Usage of the tapered DLWs is the one method for diminishing of starting current of regenerative BBU in- stability. In such waveguides besides providing the syn- chronism between the particles and wave propagating in the fundamental pass band, a region where particles can interact effectively with waves in the higher pass bands is well shorter than waveguide length. Owing this fact, for example, the starting current of regenerative BBU instability in the piece-wise homogeneous section “Kharkov-85” is more than tenfold higher than that in the homogeneous section “Kharkov-65” [2]. Accelerat- ing sections of the KUT type [3,4] are steeply tapered 1.24 m long DLWs with 2π/3 mode of oscillation and relative phase velocity 1phβ = . They have high effi- ciency (more than 80% at current accelerated of 1 A) During operation of linacs consisting one or two such sections at current accelerated more than 1 A there was no beam pulse shortening observed. We plan to upgrade the power linac for industrial purposes [4] to provide higher beam energy at beam current about 1 A by in- stalling the third accelerating section. Because absence of pulse shortening does not mean that the BBU insta- bility does not develop, we anticipate appreciable influ- ence of possible BBU instability developing in the three-section linac on beam transversal characteristics. It forced us to start developing a new computer code to simulate the process of 11E wave excitation in DLW during acceleration of electron beam with pulse length τ of several microseconds. There are the two main questions needed to be an- swered at BBU instability studding. Firstly, it is neces- sary to estimate the starting current value of regenera- tive BBU instability1. Secondly, conditions of cumula- tive BBU instability arising in the multisectional linac need to be studied. This work is dedicated to description of the mathe- matical model that the code developed is based. Results of preliminary study of BBU instability development in the three-sectional linac with the pilot version of the code also are presented. 2. MATHEMATICAL MODEL The code under development is based on the mathe- matical model that represents a DLW as a chain of cou- pled resonators. The model has the following substan- tially new feature. Motion of particles in the self-consis- tent field of the chain in the fundamental pass-band that is excited both by particles and external RF source tak- ing into account input and output couplers and their transversal motion in the self-consistent field in the higher pass-band that corresponds to the E110 oscillations of the single cell of the chain are simulated simultane- ously. We do know about existent of similar developed codes that realized such possibilities. The mathematical model of such combined excita- tion is based on the two sets of coupled equations. The sets have the similar structure but their physical mean- ing is substantially different. Because DLW is presented as the chain of coupled resonators, electromagnetic field in each cell of the chain can be written in the form of 1, ,010 2, ,110( ) ( ) ( ) ( )n n n n nE t E r t E r= + r r r E E , 1, ,010 2, ,110( ) ( ) ( ) ( )n n n n nH t H r t H r= + r r r n nH H . The time dependent functions obey the following systems of coupled equations: 1 In general, operating current of a linac should be less than the BBU instability starting current. __________________________________________________________ PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2006. № 2. Series: Nuclear Physics Investigations (46), p.131-133. 131 mailto:ayzatsky@kipt.kharkov.ua ( ) 2 1, 1, ,0 1, 2 1, 1,2 1, 2 (1) (1) 1, ,0 , 1 1, 1 , 1 1, 1 , ,010 1, 1 n n n n n n n n n n n n n n z z n n V d d Q d td t d j E dV N d t ω ω ω µ µ+ + − − + + = = + − − т n n n n n E E E E E ( ) 2 2, 2, ,0 2, 2 2, 2,2 2, 2 (2) (2) 2, ,0 , 1 2, 1 , 1 2, 1 2, , ,110 2, n n n n n n n n n n n n n n n z z n n V d d Q d td t j E dV N ω ω ω µ µ ω + + − − + + = = + + + т n n n n n H H H H H where , , 0i nω and ,i nω are the eigen frequencies of sepa- rated cell without and with taking into account influence of coupling holes, correspondently. These systems have to be combined with the equations that connect the cur- rent zj with the excited fields. During interaction of a beam consisting of a long bunch train with DLW, the dominant role will be played by storage processes of field excitation by numbers of particles at time range that is long as compare with os- cillation periods. Therefore, it is possible to assume that maximal spectral components of excited electromagnet- ic oscillations will be localized mostly around the linac operating frequency and in the higher pass-bands of DLW. The spectral components of heterodyne frequen- cies will be negligible excluding particular cases, which are rarely realized in practice. Then, time dependence of excited fields can be presented as the product of the slow amplitudes and the fast oscillating exponents. However, a methodological problem concerned with the fact that frequencies of E010 and E110 oscillations are not multiple each other is aroused during the simultaneous simulation both beam acceleration described by the first set of equations (0.1) and BBU instability excitation de- scribed by the second set of equations (0.2). This prob- lem even at slow amplitude varying of both oscillations does not allow us to use efficient method of fast oscilla- tion averaging both for substantial simplification of equations and for computational resource decrease. We use the method of fast oscillation averaging to find solu- tion of (0.1). To obtain solution of the second set of equations (0.2) we used another method based on more detailed time consideration. The last one uses the two assumptions. First one is about slow varying amplitudes of E110 oscillations during particles pass through the in- teraction region and second one is about independence of longitudinal motion from transversal motion while detailed time dependent characteristics of longitudinal particle motions (energy and position) are used at simu- lation of transversal dynamics, which is defined by E110 oscillations. 3. SIMULATION RESULTS On a basis of the above-mentioned mathematical model we have developed the computer code that allows us to carry out numerical simulations simultaneously both self-consisted transient process of particle accelera- tion and self-consisted transient beam dynamics in the transversal plane that defined by the Е110 oscillations. The code developed takes into account the fine beam structure, particularly: bunch shape, energy distribution of particles and their change with time, etcetera. Simula- tion of beam dynamics can be carried out for arbitrary number of accelerating sections. We also developed the auxiliary technique to ana- lyze the higher eigen modes of oscillations in the KUT type accelerating sections using the characteristics of the Е110 oscillation of each cell. Because these sections are strong tapered DLWs, the most dangerous modes are located near the section entrance as calculations in- dicate. Fig.1 shows comparison of the measured distri- bution of the longitudinal component of the lowest non- axisymmetrical mode of the KUT type accelerating sec- tion with simulated one. 0 100 200 300 400 0 0 .1 0 .2 0 .3 0 .4 0 .5 0 .6 0 .7 0 .8 0 .9 1 Z (m m ) E z ( a rb . U n its ) E xp S im Fig. 1. Distribution of the longitudinal component of the lowest non-axisymmetrical mode along the initial part of the section The field distribution was measured by bead-pull method. Because of technical reasons the bead did not have enough selectivity to measure the transversal and longitudinal components of the electric field separately, the experimental distribution showed in Fig.1 was ob- tained with following procedure. There were two mea- surements of field distribution with the same bead. The first measurement was carried out on the section axis, while the second one was carried out at 5 mm off the axis. Using the fact that the longitudinal component of the electrical field is zero on the axis while its transver- sal component is weakly dependent on the transversal coordinate, the experimental curve in Fig.2 was ob- tained by subtraction of the on-axis field distribution from the off-axis one. A good agreement of experimen- tal and simulated data is evident. During the next stage of our research we studied processes of BBU instability build-up in the first accel- erating section of the linac described in reference [4] (piece-wise homogeneous section) and the starting cur- rent of regenerative BBU instability was derived. The time dependent field amplitudes of the Е110 os- cillations in the fourth cell of the DLW are shown in Fig.2 for the set of accelerated current. It follows from Fig.2 that the starting current of re- generative BBU instability is about 0.65 А. Time depen- dent transversal size of bunches at the section exits for the three-sectional linac are shown in Fig.3. The first section was piece-wise homogeneous section, the sec- __________________________________________________________ PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2006. № 2. Series: Nuclear Physics Investigations (46), p.131-133. 131 ond one was a smooth tapered section and the third one was the same as the first section. Accelerated current corresponded to the starting current in the first section (I=0.65 A). Root mean square transversal size of a bunch ( ) 2 ,s qX x x= − was chosen as the analyzed characteristic. Fig. 2. Time dependent field amplitudes of the Е110 os- cillations in the fourth cell for the set of accelerated current (1 – I=0.54 А, 2 - I=0.65 А, 3 - I=0.72 А, 4 - I=0.78 А, 4- I=0.98 А) Fig. 3. Time dependent transversal size of bunches at the section exits at accelerated current of I=0.65 A Analysis of these dependences shows that transver- sal size of bunches in the second and third section has tendency to increasing however it does not growth ex- ponential with time. Simulation shows that acceleration of a beam with a current that is higher than starting one, causes exponential growth of transversal size of bunch- es with time. 4. CONCLUSION Results of transversal particle dynamic simulation outlined in this work have shown that BBU instability caused by excitation of Е110 oscillations in high current linacs consisting of few accelerating sections does not yet have cumulative character with exponential growth of beam size up to the starting current of the regenera- tive BBU instability in the first accelerating section. The work was partially supported through the STCU grant #3151. REFERENCES 1. G.A. Loew. Electron Linac Instabilities // IEEE Trans. Nucl. Sci., 1967, v.14, №3, p.529-540. 2. E.Z. Biller, A.N. Dovbnya, B.A. Kushnir et. al. Beam Current Enhancement in Kharkov Electron Linac // Part. Accel. 1990, v.27, p.119-124. 3. N.I. Aizatsky, Yu.I. Akchurin, V.A. Gurin et. al. KUT-industrial technological accelerator. Proc. of the 14th Workshop on Charged Particles Accelerators. 1994, v.4, Protvino, Russia, p.259-263. 4. N.I. Ayzatsky, E.Z. Biller, V.N. Boriskin et. al. High Power Electron S-band Linac for Industrial Purposes. Proc. of PAC03. Portland. 2003, p.2878-2880. МОДЕЛИРОВАНИЕ ПОПЕРЕЧНОЙ НЕУСТОЙЧИВОСТИ ПУЧКА В МОЩНЫХ ЛИНЕЙНЫХ УСКОРИТЕЛЯХ ЭЛЕКТРОНОВ Н.И. Айзацкий, Е.Ю. Крамаренко, И.В. Ходак, В.А. Кушнир, В.В. Митроченко, С.А. Пережогин Приведены методика расчета порогового тока регенеративной поперечной неустойчивости в неоднород- ных цилиндрических диафрагмированных волноводах и результаты моделирования развития поперечной неустойчивости в ускорителе, состоящем из нескольких ускоряющих секций. МОДЕЛЮВАННЯ ПОПЕРЕЧНОЇ НЕСТІЙКОСТІ ПУЧКА В ПОТУЖНИХ ЛІНІЙНИХ ПРИСКОРЮВАЧАХ ЕЛЕКТРОНІВ М.І. Айзацький, К.Ю. Крамаренко, І.В. Ходак, В.А. Кушнір, В.В. Митроченко, С.А. Пережогін Приведено методику розрахунку стартового струму регенеративної поперечної нестійкості в неоднорідних циліндричних діафрагмованих хвилеводах та результати моделювання розвитку поперечної нестійкості в прискорювачі, що складається з декількох прискорювальних секцій. 124 4. conclusion МОДЕЛИРОВАНИЕ ПОПЕРЕЧНОЙ НЕУСТОЙЧИВОСТИ ПУЧКА В МОЩНЫХ ЛИНЕЙНЫХ УСКОРИТЕЛЯХ ЭЛЕКТРОНОВ МОДЕЛЮВАННЯ ПОПЕРЕЧНОЇ НЕСТІЙКОСТІ ПУЧКА В ПОТУЖНИХ ЛІНІЙНИХ ПРИСКОРЮВАЧАХ ЕЛЕКТРОНІВ