Charged particles dynamics optimization in a drift-tube linear accelerator

A problem of charged particle dynamics optimization in a drift-tube linear accelerator is considered. Discrete optimization model based on the Solovjev equations is suggested. Functional is considered for dynamics estimation to allow conducting optimization and taking into account a density distri...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2006
Автор: Kotina, E.D.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2006
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/78879
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Charged particles dynamics optimization in a drift-tube linear accelerator / E.D. Kotina // Вопросы атомной науки и техники. — 2006. — № 2. — С. 137-139. — Бібліогр.: 5 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-78879
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-788792025-02-09T13:41:57Z Charged particles dynamics optimization in a drift-tube linear accelerator Оптимизация динамики заряженных частиц в ускорителе с трубками дрейфа Оптимізація динаміки заряджених часток у прискорювачі з трубками дрейфу Kotina, E.D. Линейные ускорители заряженных частиц A problem of charged particle dynamics optimization in a drift-tube linear accelerator is considered. Discrete optimization model based on the Solovjev equations is suggested. Functional is considered for dynamics estimation to allow conducting optimization and taking into account a density distribution of charged particles. Analytical expression for functional variation that helps constructing of various directed methods of optimization is suggested. Рассматривается проблема оптимизации динамики заряженных частиц в линейном ускорителе с трубками дрейфа. Предлагается дискретная модель оптимизации, основанная на уравнениях Соловьева. Для оценки динамики вводится функционал, позволяющий проводить совместную оптимизацию программного и возмущенных движений с учетом плотности распределения частиц в фазовом пространстве. Выписывается аналитическое представление вариации предложенного функционала, дающее возможность построения направленных методов оптимизации. Розглядається проблема оптимізації динаміки заряджених часток у лінійному прискорювачі з трубками дрейфу. Пропонується дискретна модель оптимізації, заснована на рівняннях Соловйова. Для оцінки динаміки вводиться функціонал, що дозволяє проводити спільну оптимізацію програмного і збуреного рухів з урахуванням густини розподілу часток у фазовому просторі. Виписується аналітичне зображення варіації запропонованого функціонала, що дає можливість побудови спрямованих методів оптимізації. The Russian Fond of Fundamental Researches, project 03-01-00726, supported this work. 2006 Article Charged particles dynamics optimization in a drift-tube linear accelerator / E.D. Kotina // Вопросы атомной науки и техники. — 2006. — № 2. — С. 137-139. — Бібліогр.: 5 назв. — англ. 1562-6016 PACS: 517.97:621.384.6 https://nasplib.isofts.kiev.ua/handle/123456789/78879 en Вопросы атомной науки и техники application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Линейные ускорители заряженных частиц
Линейные ускорители заряженных частиц
spellingShingle Линейные ускорители заряженных частиц
Линейные ускорители заряженных частиц
Kotina, E.D.
Charged particles dynamics optimization in a drift-tube linear accelerator
Вопросы атомной науки и техники
description A problem of charged particle dynamics optimization in a drift-tube linear accelerator is considered. Discrete optimization model based on the Solovjev equations is suggested. Functional is considered for dynamics estimation to allow conducting optimization and taking into account a density distribution of charged particles. Analytical expression for functional variation that helps constructing of various directed methods of optimization is suggested.
format Article
author Kotina, E.D.
author_facet Kotina, E.D.
author_sort Kotina, E.D.
title Charged particles dynamics optimization in a drift-tube linear accelerator
title_short Charged particles dynamics optimization in a drift-tube linear accelerator
title_full Charged particles dynamics optimization in a drift-tube linear accelerator
title_fullStr Charged particles dynamics optimization in a drift-tube linear accelerator
title_full_unstemmed Charged particles dynamics optimization in a drift-tube linear accelerator
title_sort charged particles dynamics optimization in a drift-tube linear accelerator
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2006
topic_facet Линейные ускорители заряженных частиц
url https://nasplib.isofts.kiev.ua/handle/123456789/78879
citation_txt Charged particles dynamics optimization in a drift-tube linear accelerator / E.D. Kotina // Вопросы атомной науки и техники. — 2006. — № 2. — С. 137-139. — Бібліогр.: 5 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT kotinaed chargedparticlesdynamicsoptimizationinadrifttubelinearaccelerator
AT kotinaed optimizaciâdinamikizarâžennyhčasticvuskoritelestrubkamidrejfa
AT kotinaed optimízacíâdinamíkizarâdženihčastokupriskorûvačíztrubkamidrejfu
first_indexed 2025-11-26T09:33:05Z
last_indexed 2025-11-26T09:33:05Z
_version_ 1849844927440093184
fulltext CHARGED PARTICLES DYNAMICS OPTIMIZATION IN A DRIFT-TUBE LINEAR ACCELERATOR E.D. Kotina Saint-Petersburg State University, Saint-Petersburg, RUSSIA A problem of charged particle dynamics optimization in a drift-tube linear accelerator is considered. Discrete op- timization model based on the Solovjev equations is suggested. Functional is considered for dynamics estimation to allow conducting optimization and taking into account a density distribution of charged particles. Analytical expres- sion for functional variation that helps constructing of various directed methods of optimization is suggested. PACS: 517.97:621.384.6 1. INTRODUCTION We consider this problem as a non-standard problem of the theory of optimal control in discrete systems. This problem of control of particular trajectory and ensem- bles of trajectories (beams of trajectories) had been con- sidered under various criteria of quality. Along trajecto- ries of the system we consider functional characterizing the dynamics of programmed motion (motion of syn- chronous particle) as well as dynamics of perturbed mo- tion. The mathematical model suggested in this work also allows accounting for a density of particle distribu- tion in phase space. The method of solving of this prob- lem is proposed. 2. MATHEMATICAL MODEL We consider the problem of optimizing of the beam parameters for the drift-tube linear accelerator. To char- acterize the motion in this accelerator we have applied the discrete Solovjev equations [1]. In common case, Solovjev equations can be written in the following form: )),(),(,()1( kukxkfkx =+ (1) )),(),(),(,()1( kukykxkFky =+ (2) for 1,...,0 −= Nk , where )(kx is the −n dimensional phase vector defining programmed motion, )(ky is the −m dimensional phase vector defining perturbed mo- tion, )(ku is −r dimensional control vector, and ))(),(,( kukxkf is the −n dimensional vector function defining the process dynamics at each step. For all { }Nk ,,1,0 ∈ the vector function ))(),(,( kukxkf is assumed to be definite and continuous on )(kUx ×Ω at all its arguments ))(),(( kukx , along with partial deriva- tives with respect to these variables. ))(),(),(,( kukykxkF is the −m dimensional vector function; for all { }Nk ,,1,0 ∈ it is assumed to be defi- nite and continuous on )(kUyx ×Ω×Ω at all its argu- ments ))(),(),(( kukykx , along with the partial deriva- tives with respect to these variables and second partial derivatives. xΩ – is the domain in nR , yΩ is the do- main in mR , and 1,,1,0),( −= NkkU  is a compact set in .rR In this case we consider the Jacobian func- tion )( )())(),(),(,( ky kFkukykxkJJ k ∂ ∂== to be non-zero for all changes of )(),(, kykxk and )(ku . Eq. (1) describes the dynamics of programmed motion. Eq. (2) describes the dynamics of perturbed motions. We assume that 0)0( xx = is fixed and the initial state of system (2) is described by set −0M a compact set of non-zero measures in mR . We call the sequence of vectors { })1(,),1(),0( −Nuuu  the control of the system described by Eqs. (1) and (2) and denote it by u for brevity. We call the corresponding sequence of vec- tors { })(,),1(),0( Nxxx  the trajectory of programmed motion and denote it by ),( 0 uxxx = . We denote the phase state of a programmed trajectory for the −k th step by ))(,,()( 0 kuxkxkx = . Similarly, we call the se- quence of vectors { })(,),1(),0( Nyyy  the trajectory of perturbed motion and denote it by ),,( 0 uyxyy = . We denote the phase state of the particle for the −k th step by ),,,()( 0 uyxkyky = . The set of trajectories ),,( 0 uyxy corresponding to the initial state 0x , the control u and different states 00 My ∈ are referred to as an ensemble of trajectories, or the beam of trajecto- ries. The phase state of the beam at the −k th step is also called the cross-section of the beam of trajectories and is denoted by ukM , i.e.: { },)),(),(,,()(:)( 000, MykukxykykykyM uk ∈== and the controls satisfying conditions 1...,1,0),()( −=∈ NkkUku are admissible. Let 0x be the initial state of a synchronous particle and 0M be the set of initial phase states of charged par- ticles with density distribution ),0()( 000 yy ρρ = . We would like to determine how the distribution density function along the beam trajectories is transformed. Let us fix an instant 1+k and a point ukk My ,11 ++ ∈ . Let )1( +ky be an image of the point )(ky in view of Eq. (2). We denote by ))(( kyG the set of points uk i Mky ,)( ∈ , such that the trajectories of the system emanating at the instant k from )(kyi at the step 1+k __________________________________________________________ PROBLEMS OF ATOMIC SСIENCE AND TECHNOLOGY. 2006. № 2. Series: Nuclear Physics Investigations (46), p.137-139. 137 fall within a certain −r neighborhood ))1(( +kyS r of the point )1( +ky . By the distribution density of trajectories from Eq. (2) at the point )1( +ky on the 1+k - th step, we mean the limit: ( )( ) ( ) ( ) 1 0 ( ) 1( 1, ) lim , d , ( 1)k k kr r G y k k y k y y mes S y k ρ ρ+ → м ьп п+ = н э+п по ю т (3) where ( ) .)1())1(( ))1(( ∫ + +=+ kyS r r kdykySmes From the one-to-one correspondence of the sets ))(( kyG and ))1(( +kyS r , the integral in Eq. (3) trans- forms to the form: )1(),( ))1(( 1 +∫ + − kdyJyk kyS kk r ρ , (4) where )(kyyk = and ( ) ( ) . )( )(),(),(,det )1( )(det )(),(),(, 1 11     ∂ ∂ =    +∂ ∂ == − −− ky kukykxkF ky ky kukykxkJJ k In view of this and the form ( )))1(( +kySmes r , we ob- tain the following equation for ),( kykρ : ).(),0(),,())1(,1( 000 1 yyykJkyk kk ρρρρ ==++ − (5) The function ),()( kykk ρρ = denotes the distribution density function for the k -th step. We introduce the following functional: ,),(( )),,(,,()( , , , 1 1 ∫ ∑ ∫ += − = uN uk M NNN N k M kkkkkk dyyNyg dyuykyxuI ρ ρϕ (6) where kϕ and g are continuously differentiable func- tions, )(kxxk = . The functional (6) allows the simultaneous estima- tion of programmed and perturbed motions, as well as their simultaneous optimization and taking into account the density of particle distribution in the phase space. 3. VARIATION OF FUNCTIONAL Let us rewrite Eqs. (1) and (2) and an equation for the distribution density along trajectories of the system (2): )),(),(,()1( kukxkfkx =+ )),(),(),(,()1( kukykxkFky =+ (7) ),())(),(),(,()1( 1 kkukykxkJk ρρ ⋅=+ − for .1,,0 −= Nk  Let us denote variations of trajectories of system (7) as )(),( kykx δδ , and )(kδ ρ , with admissible variation of control u∆ and a given u . Now we define the corresponding equations for vari- ations: ),( )( )( )( )( )( )1( ku ku kfkx kx kfkx ∆ ∂ ∂ + ∂ ∂ =+ δδ (8) )( )( )()( )( )()( )( )()1( ku ku kFky ky kFkx kx kFky ∆ ∂ ∂+ ∂ ∂+ ∂ ∂=+ δδδ , (9) ).( )( )()()()( )( )( )()()( )( )()()1( 1 1 11 ku ku kJkkkJ ky ky kJkkx kx kJkk ∆ ∂ ∂ + + ∂ ∂ + ∂ ∂ =+ − − −− ρδ ρ δρδρδ ρ (10) We also have the following Eqs. [2-3]: ,)( )( )()( )( )()( )( )()( )()1( 1     ∆ ∂ ∂+ ∂ ∂+ ∂ ∂ +=+ − ku ku kJkx kx kJky ky kJkJ kydivkydiv yy δδ δδ (11) where ∑ = ∂ ∂= m i i i y ky kykydiv 1 . )( )()( δδ Taking into account Eqs. (8)–(11), the initial values of variations 0)0(,0)0(,0)0( === δ ρδδ yx , ,0)0( =ydivyδ and using methods of investigation for functions of type (6) [2-3], variation of functional (6) (for admissible variation of control ∆u) can be repre- sented in the following form: ),( )( )( )( )( )1( )( )( )()1( )( )( )1()( )( )( )1()( 1 1 0 , kudy ku k ku kJkq ku kJkkJ ku kfkkJ ku kFkpkJI k k T N k M T uk ∆  ∂ ∂ + ∂ ∂ + + ∂ ∂ ++ ∂ ∂ + +  ∂ ∂ += − − = ∑ ∫ ϕ ρξγ δ (12) where )(),(),( kkkp ξγ and )(kq are the following aux- iliary functions: , )( ),( )(     ∂ ∂ = Ny ygNp NNT ρ , )( )),( )(     ∂ ∂ = N yg N NN ρ ρ ξ ,0)(),,()( == NygNq NN γρ )()1()()( kkqkJkq ϕ++= , , )( )( )1()( k k kk ρ ϕ ξξ ∂ ∂ ++= , )( )( )( )( )1( )( )( )()1()( )( )( )1()()( 1 ky k ky kJ kq ky kJ kkkJ ky kF kpkJkp TT ∂ ∂ + ∂ ∂ ++ ∂ ∂ + + ∂ ∂ += − ϕ ρξ , )( )( )( )( )1( )( )( )()1()( )( )( )1()( )( )( )1()()( 1 kx k kx kJ kq kx kJ kkkJ kx kf kkJ kx kF kpkJk TTT ∂ ∂ + ∂ ∂ ++ ∂ ∂ + + ∂ ∂ ++ ∂ ∂ += − ϕ ρξ γγ for .1,,1 −= Nk  __________________________________________________________ PROBLEMS OF ATOMIC SСIENCE AND TECHNOLOGY. 2006. № 2. Series: Nuclear Physics Investigations (46), p.137-139. 137 Eq. (12) for functional variation allows the construc- tion of various methods of optimization of the function- al in Eq. (6). 4. CONCLUSION Simultaneous optimization of programmed and per- turbed motions under various quality criteria was con- sidered in previous works [3–5] and the results were ap- plied to the optimization of beam dynamics in linear- tube accelerators [4-5]. The analytical representation obtained in this paper for variation of the functional ex- amined allows taking into account the density distribu- tion of charged particles as well. 5. ACKNOWLEDGEMENTS The Russian Fond of Fundamental Researches, project 03-01-00726, supported this work. REFERENCES 1. B.P. Murin, B.I. Bondarev, V.V. Kushin, A.P. Fe- dotov. Ion linear accelerators. V.1. Problems and theory. - М.: “Atomizdat”, 1978, p.264. 2. D.A. Ovsyannikov, Modeling and Optimization of Charged Particle Beam Dynamics. Leningrad State University Publishing House, Leningrad, 1990 (in Russian). 3. E.D. Kotina, A.D. Ovsyannikov. On simultaneous optimization of programmed and perturbed mo- tions in discrete systems. Proc. of the 11th Interna- tional IFAC Workshop. 2001, v.1, Oxford, UK, p. 187-189. 4. E.D. Kotina, S.A Garbuzova. Optimization of Lon- gitudinal Motion of Charged Particles in Drift- Tube Linear Accelerator. Proc. International Work- shop: Beam Dynamics & Optimization, BDO-2002. 2002, St. Petersburg, p.135-141. 5. E.D. Kotina. Control discrete systems and their ap- plications to beam dynamics optimization. Proc. of the International Conference on Physics and Con- trol – PhysCon 2003, 2003, St. Petersburg, Russia, p.997-1002. ОПТИМИЗАЦИЯ ДИНАМИКИ ЗАРЯЖЕННЫХ ЧАСТИЦ В УСКОРИТЕЛЕ С ТРУБКАМИ ДРЕЙФА Е.Д. Котина Рассматривается проблема оптимизации динамики заряженных частиц в линейном ускорителе с трубка- ми дрейфа. Предлагается дискретная модель оптимизации, основанная на уравнениях Соловьева. Для оцен- ки динамики вводится функционал, позволяющий проводить совместную оптимизацию программного и воз- мущенных движений с учетом плотности распределения частиц в фазовом пространстве. Выписывается ана- литическое представление вариации предложенного функционала, дающее возможность построения направ- ленных методов оптимизации. ОПТИМІЗАЦІЯ ДИНАМІКИ ЗАРЯДЖЕНИХ ЧАСТОК У ПРИСКОРЮВАЧІ З ТРУБКАМИ ДРЕЙФУ Є.Д. Котіна Розглядається проблема оптимізації динаміки заряджених часток у лінійному прискорювачі з трубками дрейфу. Пропонується дискретна модель оптимізації, заснована на рівняннях Соловйова. Для оцінки динаміки вводиться функціонал, що дозволяє проводити спільну оптимізацію програмного і збуреного рухів з урахуванням густини розподілу часток у фазовому просторі. Виписується аналітичне зображення варіації запропонованого функціонала, що дає можливість побудови спрямованих методів оптимізації. 130 1. Introduction оптимизация динамики заряженных частиц в ускорителе с трубками дрейфа