Nonrelativistic plasma HF-electronics
The main physical principles for the elaboration of plasma and hybrid plasma-filled microwave devices based on the beam-plasma interaction are formulated. The theoretical and experimental results of the investigations of electromagnetic oscillations excitation in beam-plasma systems carried out in N...
Saved in:
| Published in: | Вопросы атомной науки и техники |
|---|---|
| Date: | 2005 |
| Main Author: | |
| Format: | Article |
| Language: | English |
| Published: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2005
|
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/78890 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Nonrelativistic plasma HF-electronics / I.N. Onishchenko // Вопросы атомной науки и техники. — 2005. — № 1. — С. 114-118. — Бібліогр.: 31 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-78890 |
|---|---|
| record_format |
dspace |
| spelling |
Onishchenko, I.N. 2015-03-22T10:23:12Z 2015-03-22T10:23:12Z 2005 Nonrelativistic plasma HF-electronics / I.N. Onishchenko // Вопросы атомной науки и техники. — 2005. — № 1. — С. 114-118. — Бібліогр.: 31 назв. — англ. 1562-6016 PACS: 41.75.Lx, 41.85.Ja, 41.60.Bq https://nasplib.isofts.kiev.ua/handle/123456789/78890 The main physical principles for the elaboration of plasma and hybrid plasma-filled microwave devices based on the beam-plasma interaction are formulated. The theoretical and experimental results of the investigations of electromagnetic oscillations excitation in beam-plasma systems carried out in National Science Center “Kharkov Institute of Physics and Technology” are presented. The electrodynamics of plasma-filled slow wave structures, nonlinear stage of beam-structure interaction, and stochastization mechanism are studied. Some experimental installations elaborated are described and obtained results on power level, efficiency, and spectra аre shown. Сформульовані основні принципи розробки плазмових і гібридних плазмонаповнених СВЧ-приладів, заснованих на пучково-плазмовій взаємодії. Представлені результати теоретичних і експериментальних досліджень збудження електромагнітних коливань в пучково-плазмових системах, які проводились в ННЦ ХФТІ. Досліджені електродинаміка плазмонаповнених уповільнюючих структур, нелінійна стадія взаимодії з ними пучків і механізми стохастизації. Описані деякі експериментальні стенди і приведені отримані на них потужність, ккд і спектри. Сформулированы основные принципы разработки плазменных и гибридных плазмонаполненных СВЧ- приборов, основанных на пучково-плазменном взаимодействии. Представлены результаты теоретических и экспериментальных исследований возбуждения электромагнитных колебаний в пучково-плазменных системах, которые проводились в ННЦ ХФТИ. Исследованы электродинамика плазмонаполненных замедляющих структур, нелинейная стадия взаимодействия с ними пучков и механизмы стохастизации. Описаны некоторые экспериментальные стенды и приведены полученные на них мощность, кпд и спектры. This work was supported by grant DFFD №02.07/325 en Національний науковий центр «Харківський фізико-технічний інститут» НАН України Вопросы атомной науки и техники Plasma electronics Nonrelativistic plasma HF-electronics Нерелятивістська плазмова СВЧ-електроніка Нерелятивистская плазменная СВЧ-электроника Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Nonrelativistic plasma HF-electronics |
| spellingShingle |
Nonrelativistic plasma HF-electronics Onishchenko, I.N. Plasma electronics |
| title_short |
Nonrelativistic plasma HF-electronics |
| title_full |
Nonrelativistic plasma HF-electronics |
| title_fullStr |
Nonrelativistic plasma HF-electronics |
| title_full_unstemmed |
Nonrelativistic plasma HF-electronics |
| title_sort |
nonrelativistic plasma hf-electronics |
| author |
Onishchenko, I.N. |
| author_facet |
Onishchenko, I.N. |
| topic |
Plasma electronics |
| topic_facet |
Plasma electronics |
| publishDate |
2005 |
| language |
English |
| container_title |
Вопросы атомной науки и техники |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| format |
Article |
| title_alt |
Нерелятивістська плазмова СВЧ-електроніка Нерелятивистская плазменная СВЧ-электроника |
| description |
The main physical principles for the elaboration of plasma and hybrid plasma-filled microwave devices based on the beam-plasma interaction are formulated. The theoretical and experimental results of the investigations of electromagnetic oscillations excitation in beam-plasma systems carried out in National Science Center “Kharkov Institute of Physics and Technology” are presented. The electrodynamics of plasma-filled slow wave structures, nonlinear stage of beam-structure interaction, and stochastization mechanism are studied. Some experimental installations elaborated are described and obtained results on power level, efficiency, and spectra аre shown.
Сформульовані основні принципи розробки плазмових і гібридних плазмонаповнених СВЧ-приладів, заснованих на пучково-плазмовій взаємодії. Представлені результати теоретичних і експериментальних досліджень збудження електромагнітних коливань в пучково-плазмових системах, які проводились в ННЦ ХФТІ. Досліджені електродинаміка плазмонаповнених уповільнюючих структур, нелінійна стадія взаимодії з ними пучків і механізми стохастизації. Описані деякі експериментальні стенди і приведені отримані на них потужність, ккд і спектри.
Сформулированы основные принципы разработки плазменных и гибридных плазмонаполненных СВЧ- приборов, основанных на пучково-плазменном взаимодействии. Представлены результаты теоретических и экспериментальных исследований возбуждения электромагнитных колебаний в пучково-плазменных системах, которые проводились в ННЦ ХФТИ. Исследованы электродинамика плазмонаполненных замедляющих структур, нелинейная стадия взаимодействия с ними пучков и механизмы стохастизации. Описаны некоторые экспериментальные стенды и приведены полученные на них мощность, кпд и спектры.
|
| issn |
1562-6016 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/78890 |
| citation_txt |
Nonrelativistic plasma HF-electronics / I.N. Onishchenko // Вопросы атомной науки и техники. — 2005. — № 1. — С. 114-118. — Бібліогр.: 31 назв. — англ. |
| work_keys_str_mv |
AT onishchenkoin nonrelativisticplasmahfelectronics AT onishchenkoin nerelâtivístsʹkaplazmovasvčelektroníka AT onishchenkoin nerelâtivistskaâplazmennaâsvčélektronika |
| first_indexed |
2025-11-24T05:51:04Z |
| last_indexed |
2025-11-24T05:51:04Z |
| _version_ |
1850842877971660800 |
| fulltext |
NONRELATIVISTIC PLASMA HF-ELECTRONICS
I.N. Onishchenko
National Science Center “Kharkov Institute of Physics and Technology”,
Academicheskaya Str. 1, Kharkov, 61108, Ukraine
The main physical principles for the elaboration of plasma and hybrid plasma-filled microwave devices based on the
beam-plasma interaction are formulated. The theoretical and experimental results of the investigations of
electromagnetic oscillations excitation in beam-plasma systems carried out in National Science Center “Kharkov
Institute of Physics and Technology” are presented. The electrodynamics of plasma-filled slow wave structures,
nonlinear stage of beam-structure interaction, and stochastization mechanism are studied. Some experimental
installations elaborated are described and obtained results on power level, efficiency, and spectra аre shown.
PACS: 41.75.Lx, 41.85.Ja, 41.60.Bq
1. INTRODUCTION
Prediction of the beam-plasma instability [1,2],
discovery of the beam-plasma discharge [3-5], and
investigation of plasma waveguide electrodynamics [6]
have laid the foundation of the new branch of plasma
physics – the plasma electronics. Numerous theoretical
and experimental investigations carried out in NSC
“KIPT” on this subject brought to the elaboration of the
new kind of HF-devices of regular and stochastic
electromagnetic oscillations, so called beam-plasma
generators and amplifiers [BPG]. The physical principles
for the creation of such devices were firstly formulated in
NSC “KIPT” in 1965. Only later they were partly
published by the researches of NSC “KIPT” [7-9] and by
authors from other places [10-11].
The theoretical efforts were undertaken to the
investigation of plasma filled conventional slow wave
structures [hybrid structures] electrodynamics,
stochastization mechanisms, and spectrum evolution in
such strong nonlinear and nonequilibrium systems as
BPG’s are.
Experiments were performed both for relativistic and
nonrelativistic electron beams. The first ones in plasma
waveguides [12,13] and in corrugated vacuum
waveguides, filled with plasma [14,15] showed the
impressive enhancement of the efficiency. “KIPT”
experiments on nonrelativistic beams interaction with
hybrid plasma structures were firstly represented in [16]
demonstrating some merits of beam-plasma devices. The
essential advanced elaboration and technological
perfection of amplifier type were made in VEI [17]. Some
experiments with BPD were fulfilled in MRTI [18].
The idea of using plasma as a slow wave structure
concludes to the high gain parameter in beam-plasma
interaction reaching to 15 dB/cm [19]. The frequency of
excited oscillations can be tuned simply by plasma
density changing. As an electromagnetic noise source, the
beam-plasma system is a good approach due to the strong
nonlinearity and nonstationarity of plasma, needed for
dynamic chaos development, and abundance of plasma
eigen modes. The problem of extracting of excited plasma
oscillations is solved comparatively simply for the
relativistic beam as their phase velocity is close to the
speed of radiated electromagnetic waves [12-15]. In the
nonrelativistic case, more attractive one because of
compact electron beam sources, plasma oscillations are
trapped in plasma. So, special measures and tools should
be used to match the electrodynamics of nonrelativistic
beam-plasma system with vacuum waveguide tract or
open space. For this goal the conventional slow wave
structures filled with plasma were used [20,21]. As it was
established in [7] optimal configuration is the partial
filling with plasma, i.e. plasma is produced [for example
by electron beam collisions with neutral gas] only in
beam transit channel. It provides the interaction of the
electron beam with vacuum eigen mode modified with
plasma in such a way that the wave field in plasma has
volumetric topography and, hence, beam-wave coupling
is effective and gain parameter is high. Electron beam is
efficiently interacting with plasma in transit channel and
excited HF-power is being extracted and transported in
surrounding vacuum region of waveguide.
The main advantages of the beam-plasma devices
using plasma-filled slow wave structures are:
- possibility of power increase by rising of the vacuum
limit current due to the compensation of the beam space
charge;
- volume character of the excited wave that leads to the
considerable increasing of the growing rate and
consequently efficiency enhancement in comparison with
the vacuum case;
- tuning of the excited frequency by plasma density
changing;
- possibility to realize the interaction in a large volume
and, hence, to obtain high power output;
- great number of the eigen modes in plasma-filled
structures vary and enrich obtained spectra without losing
the possibility of their governing.
2. THEORY
2.1 ELECTRODYNAMICS [7, 16, 22, 23]
Theoretical investigations involved the study of the
electrodynamics of hybrid plasma structures and
stochastization processes. The gain, start current,
nonlinear saturation and efficiency, and thresholds of
bifurcation should be estimated. Some conventional slow
wave structures (SWS) – helix, chain of coupled cavities,
corrugated waveguide, ring-bar SWS, sequence of rings,
and coaxial grate – were investigated under plasma filling
to apply for various frequency bands. The main feature of
these devices filled with plasma is the essential
modification of dispersion properties and field
114 Problems of Atomic Science and Technology. 2005. № 1. Series: Plasma Physics (10). P. 114-118
topography that leads to the efficiency enhancement,
activation of dynamic chaos evolution, and enriching of
excited spectra. Below we present theoretical
investigations of the hybrid SWS consisting of the chain
of inductively coupled cavities in which the transit
channel for electron beam is filled with plasma. The
cross-section of this structure is represented in Fig. 1..
Fig. 1. Cross-section of chain of inductively coupled
cavities
Dispersion equation (DE) for such hybrid structure
was obtained in (22,23) by the method of partial regions
(24) and the theory of the slit antenna (25). Due to the
periodicity of the structure and plasma filling a great
number of radial plasma waves (Trivelpiece-Gould
modes) multiplied by system periodicity (spatial Flouquet
modes) cover densely the plane longitudinal wave vector-
frequency (kz ,ω) in the frequency region (0 -ω p), where ω
p is the plasma frequency. In Fig. 2 the noninteracting
dispersion curves corresponding to the mentioned modes
are represented on plane (kz ,ω) only for four radial modes
(to illustrate of the phenomenon). The interaction of
electron beam with such structure leads to the excitation
of so-called “dense” spectrum (26).
Fig. 2. Eigen radial and spatial modes
The left side of obtained dispersion equation in absence of
the beam (cold system) F(ω)=0 is pictured in Fig. 3 as a
function of frequency ω at fixed geometric parameters
and plasma frequency ω p =0.5 π c/D (c is speed of light,
D is structure period). It is seen the abundance of spatial.
harmonics of many radial modes of the low frequency
plasma wave (ω< ω p ) and clearly expressed principal
TE-mode of the vacuum coaxial resonator, modified by
plasma assistance. We should note that the eigen
frequencies of noninteracting vacuum modes (the roots of
F(ω)) become the poles with vertical lines-asymptotes,
when modes interact and the roots of F(ω) displace. It is
important that roots displacement is also caused by
plasma presence and depends on plasma density. It means
that excited frequency can be tuned by plasma density
changing. The value of the displacement from vacuum
noninteractive case for the principal mode can be seen in
Fig. 3 as the most right cross point of the dispersion curve
with a small incline.
Fig. 3. Dependence of function F of DE upon frequency
The evolution of the radial topography of the
longitudinal field ε z inside transit channel filled with
plasma when plasma density grows is shown in Fig. 4.
The curves 1,2,3 correspond to the plasma frequencies ω p
= (0;0.5;1.5) π c/D. Volume property of the field inside
the channel is evident for higher plasma densities.
Fig. 4. Radial topography of ε z
2.2 STOCHASTIZATION [27-30]
The preliminary experimental of beam-plasma HF-
generator with the SWS described above have shown the
following scenario. With beam current growth the change
of generator operation regimes takes place: regular
monochromatic generation is being changed by
automodulation regime with a lot of satellites and noise
component, which makes each spectral component wider.
With further increase of beam current “natural” width of
spectral lines becomes so wide that satellites overlap.
Noise spectrum becomes uniform, its band coincide with
the passband of SWS. Such evolution of spectra is typical
for the majority of HF-devices (TWT, gyrotron etc.),
however such peculiarities as spectral line widening and
uniformity of noise spectrum indicate that hybrid SWS
possesses new qualities not typical for vacuum devices.
115
Stochastization mechanism in vacuum devises is based on
phenomenological point map, that is treated as amplitude
transformation for synchronous wave after one
propagation along feed-back circle. Meanwhile the
conception of “function of mapping” for amplitude can be
introduced exactly only for monochromatic signal as such
function depends strongly on signal frequency in
amplification band. So for description of noise regime
with wide band the new theory (functional map) was
required, that would be based on the peculiarities of
solutions for nonstationary equations of TWT with
delayed feedback. Nonstationary equations of TWT-
amplifier have two families of characteristics. Information
from the entrance of amplifier of L length transmitted to
its exit by beam particles and synchronous wave with
velocities vb and vg , correspondingly. So the output signal
ε output (τ) is determined by input signal on the time interval
∆ t = L(vb - vg )/ (vbvg ). By other words, output signal ε output
(τ) is not the function, as it was supposed in point map,
but a functional of input signal ε input (τ).
The plasma-beam microwave generator is considered as
a circular system that consists of non-linear amplifier of
HF-oscillations and feedback that maintains the excitation
of the whole system. Non-linear amplifier is TWT, in
which an electron beam interacts with synchronous wave
of the structure. At analytical investigation we use the
results, published in (27-30), and treat, in particular, the
theory of circular generator with TWT as a non-linear
amplifier. We consider also the influence of low-
frequency non-stationary processes in plasma on a signal
dynamics. The example of spectra of stochastic
generation, obtained without and with taking into account
the self consistent dynamics of plasma are pictured in
Figs 5 and 6, correspondingly.
Fig. 5 Spectrum without plasma dynamics
Fig. 6 Spectrum with plasma dynamics
The observation of spectrum enhancement due to low-
frequency plasma instabilities may be difficult because this
phenomenon is possible in the hybrid plasma-filled slow-
wave structure if the microwave power is sufficiently high
and generator operates in stochastic automodulation
regime. Therefore the investigation of it is easily carried
out in the regime in which the monochromatic external
signal is applied to the TWT-generator input. In this case
the generator may be driven from stochastic regime to
monochromatic one without essential power change. The
low-frequency instabilities may be identified as low-
frequency oscillations of the phase shift ∆α(τ) . The
spectrum of such oscillations determines spectral line
form of the plasma-beam microwave generator at high
level of the power.
So due to the sufficiently large growing rate in the hybrid
structure the threshold of stochastic generation are lower.
The stochastization mechanism at high power levels is
the alternating turbulence. Besides, the presence of a great
number of radial modes and their space harmonics and
also low frequency plasma motion (ion. sound, density
modulation etc.) leads in the nonlinear regime to more
homogeneous spectra of the stochastic automodulation
comparatively to the vacuum case.
3. EXPERIMENT
3.1 RESULTS OF CENTIMETER GENERATION
Experimental realization of the generation in
centimeter range has been carried out with slow wave
structure of chain of coupled cavities (CCP) type with
plasma filled transit channel. The scheme of the device is
represented in Fig. 7.
Fig. 7 Scheme of generator with CCP structure
Electron gun (1), injecting beam current 10 A at
voltage 40 keV, is matched with compact high efficient
ion-getter pump maintaining the pressure 10 –6 Torr; slow
wave structure (2) composed of cupper cavities,
inductively coupled with slits of lentil form, and drift
tubes was placed in a solenoid (3) producing magnetic
field 3 kG; cooled collector (4) was capable to dissipate
the power up to 260 kW; the power output was realized
by the waveguide of 74×36 mm sizes wideband sapphire
window (5); the plasma of density 51010 –1012 cm-3 was
produced by beam-plasma discharge in the transit channel
under gas filling. The standing wave coefficient was 1.5 –
2.0 over the frequency band 2.4 – 5 GHz. The electron
gun has the protection from the ion bombardment.
116
Fig. 8. Power spectrum
Fig. 9. Dependence of power on pressure
Start current was 100 mA and the stochastization
threshold was 1.0 A in a good agreement with
calculations.. With current increasing the generated
frequency band overlapped the whole passband of the
CCP structure.. Frequency spectrum is wide and
homogeneous in the band of about a half of octave
(Fig.8). The efficiency enhancement under plasma
assistance and the existing of optimum of plasma density,
that was discussed in theory is demonstrated in Fig.9.
The efficiency reached 40% for the optimum
conditions in continuous operations. Varying phase
velocity by the corresponding structure geometry the
electronic efficiency was obtained 50% and output power
40 kW. For the pulsed operation during 4 ms the power
100 kW was achieved.
3.2 RESULTS OF DECIMETER GENERATION
In decimeter range of wavelength the BPG of stochastic
oscillations has been elaborated and created using plasma
-helix structure with a single or modified contra-wound
helix circuits that are operating in quasi continuous or
continuous regimes.
Fig. 10. Scheme of generator with helix structure
The generator (Fig.10) is consist of the following
units: 1 — electron gun, 2 — helix structure, matched
with beam-plasma interaction region, 3 — collector, 4 —
solenoid, 5 — HF-load, 6 — HF power register. The beam
current is 13 A, beam energy — 15 keV, magnetic field
strength — 1100 G, plasma density — 6-1010cm-3. The
total generated power was 80 kW and efficiency was
40%.
This work was supported by grant DFFD №02.07/325
REFERENCES
[1] A.I.Akhiezer, Ya.B.Fainberg.// Dokl. Acad. Sci. USSR
(69). 1949, No.4, pp.555-556.
[2] D.Bohm, E.Gross.// Phys.Rev. (75). 1949, No.12,
pp.1861-1876.
[3] A.K.Berezin, Ya.B.Fainberg, G.P.Berezina et al.//
Atomnaya Energija (11). 1961, No.6, pp.493.
[4] I.F.Kharchenko, E.A.Kornilov, Ya.B.Fainberg et al.//
J. Tech. Phys. (31). 1961, No.7, pp.761.
[5] W.D.Getti, L.D.Smullin.// J.Appl. Physics (34). 1963,
No.12, pp.3421-3429.
[6] Ya.B.Fainberg, M.F.Gorbatenko.// J. Tech. Phys. (29),
1961, No.6, pp.549-562.
[7] Ya. B.Fainberg et al.// Dokl. Acad. Sci. Ukr.SSR,
Ser:A, No.11,1990, pp.56.
[8] A.K.Berezin, V.A.Buts, I.K.Kovalchuk et al.
Electrodynamics of Helix-Plasma Structures // Prepr.
Acad. Sci. of Ukraine. Kharkov, KPTI, 1991, p91-52.
[9] E.A.Kornilov et al.// Proc. IV Symp. On High Current
Electronics, June 21-30, 1992. N.Novgorod:
“Gyperoks”, 1992, p.132.
[10] K.G.Gureev, N.I.Karbushev, A.I.Lisitsin, et al.//
Proc. 8th Intern. Conf. on High Power Particles
Beams, Novosibirsk, July 2-5, 1990. Singapure: World
Sci., 1990, Vol.2, p.1173.
[11] V.I.Perevodchikov, M.A.Zavjalov, V.E.Martynov et
al.// Proc. 9th Intern. Conf. on High Power Particles
Beams, Washington, May 25-29, 1992, p.1318.
[12] A.K.Berezin, N.M. Zemlyanski, Ya.B.Fainberg et al.
Theoretical and Experimental Investigations of
Plasma Acceleration Methods. // Prepr. Acad. Sci.
Kharkov, 1972, USSR. KPTI. 72-07.
[13] M.V.Kuzelev, A.A.Rukhadze, M.S.Rabinovich et
al.// JETP (63). 1982, pp.1358-1367.
[14] Yu.Tkach, Ya.B.Fainberg, I.I.Magda et al.// Physica
Plasmy (1). 1975, No.1, pp.81-87.
[15] Y.Carmel, W.R.Low, T.M.Antonsen et al.// Phys.
Rev. Lett. (62). 1989, pp.20 ; Proc. Intern. Workshop
“Strong Microwaves in Plasmas”, N.Novgorod, Aug.
15-22, 1993, p.34.
[16] A.N.Antonov, A.K.Berezin, Yu.P.Bliokh et al. To
the electrodynamics of the hybrid plasma-waveguide
structures [theory and experiment]. Proc. 10th Intern.
Conf. on High Power Particles Beams, San Diego,
June 20-24, 1994, p.6-5.
[17] M.A.Zavjalov, V.E.Martynov, L.A.Mitin et al., ibid.
p.40.
[18] K.G.Gureev, N.I.Karbushev, A.I.Komov et al., ibid.
p.15.
117
[19] D.I.Trubetskov and L.A. Pishchik. Nonrelativistic
plasma HF-devices, based on Cherenkov radiation.//
Physica Plasmy (15), 1989, No.3, pp.342-353.
[20] M.Allen, C.Biechler, P.Chorney. Tubes pour
hyperfrequences. // Fravaux du Secong.internat.
Paris, 14-18 September, 1964. P. 437
[21] G.A.Bernashevski, E.V.Bogdanov, V.Ya. Kislov,
E.S.Chernov. Plasma and electron HF-amplifiers and
generators. Book Moscow: “Sov. Radio”, 1965
[22] Ya.B.Fainberg et al.// Proc. IX Winter School-
Seminar on UHF Electronics and Radiophysics,
Saratov, January 12-21 1993. Saratov: State
Educational Centre, 1993, p.66.
[23] Ya.B.Fainberg, Yu.P.Bliokh, M.G.Lyubarskii et al.
Electrodynamics of Hybrid Plasma Slow-Wave
Structures. // Plasma Physics Reports (20), 1994,
No.7-8, pp.681-690.
[24] A.D.Grigoryev, V.B.Yankevich. Resonators and
slow wave UHF systems. Moscow: “Nauka”, 1984.
[25] M.L.Levin // J. Tech. Phys. (21). No.7, 1951, pp.787-
794.
[26] N.R.Lou, Y.Carmel, T.M.Antonsen et al. New modes
in a plasma with periodic boundaries: The origin of
dense spectrum. // Phys. Rev. Lett. (67). No.18, 1991,
pp.2481-2484.
[27] Yu.P.Bliokh, A.V.Borodkin, Ya.B.Fainberg et al.//
Izvestiya Vuzov. Ser. Appl. Nonlinear Dynamics.
Vol.1, 1993, No.1/2, pp.34-49.
[28] Yu.P.Bliokh, M.G.Lyubarskii, L.A.Mitin et al. Study
of Signal Stochastization Mechanism in Plasma-Beam
Generators// Physica Plasmy (20). 1994, No.7-8,
pp.747.
[29] A.N.Antonov, A.K.Berezin, Yu.P.Bliokh et al.// Ukr.
J. of Physics (40). 1995, No.5, pp.413.
[30] Yu.P.Bliokh, V.A.Buts, M.M.Zemlyanski et al.//
Ukr. J. of Physics (43). 1998, No.9, pp.1167.
[31] M.Feigenbaum// Lecture Notes in Phys. (179), 1983,
pp.131-148.
НЕРЕЛЯТИВИСТСКАЯ ПЛАЗМЕННАЯ СВЧ-ЭЛЕКТРОНИКА
И.H. Онищенко
Сформулированы основные принципы разработки плазменных и гибридных плазмонаполненных СВЧ-
приборов, основанных на пучково-плазменном взаимодействии. Представлены результаты теоретических и
экспериментальных исследований возбуждения электромагнитных колебаний в пучково-плазменных системах,
которые проводились в ННЦ ХФТИ. Исследованы электродинамика плазмонаполненных замедляющих
структур, нелинейная стадия взаимодействия с ними пучков и механизмы стохастизации. Описаны некоторые
экспериментальные стенды и приведены полученные на них мощность, кпд и спектры.
НЕРЕЛЯТИВІСТСЬКА ПЛАЗМОВА СВЧ-ЕЛЕКТРОНІКА
І.H. Онищенко
Сформульовані основні принципи розробки плазмових і гібридних плазмонаповнених СВЧ-приладів,
заснованих на пучково-плазмовій взаємодії. Представлені результати теоретичних і експериментальних
досліджень збудження електромагнітних коливань в пучково-плазмових системах, які проводились в ННЦ
ХФТІ. Досліджені електродинаміка плазмонаповнених уповільнюючих структур, нелінійна стадія взаимодії з
ними пучків і механізми стохастизації. Описані деякі експериментальні стенди і приведені отримані на них
потужність, ккд і спектри.
118
|