Brillouin and kynetic flows in a magnetron diode

Two classes of approaches have received the most attention to describe the important space charge dynamics in a magnetron are Brillouin flow and double-stream kinetic model. Precise analysis of electron dynamics in fully selfconsistent kinetic equilibrium in a smooth-bore magnetron shows that for a...

Full description

Saved in:
Bibliographic Details
Published in:Вопросы атомной науки и техники
Date:2004
Main Author: Agafonov, A.V.
Format: Article
Language:English
Published: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2004
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/78969
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Brillouin and kynetic flows in a magnetron diode / A.V. Agafonov // Вопросы атомной науки и техники. — 2004. — № 1. — С. 131-133. — Бібліогр.: 9 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-78969
record_format dspace
spelling Agafonov, A.V.
2015-03-24T15:08:06Z
2015-03-24T15:08:06Z
2004
Brillouin and kynetic flows in a magnetron diode / A.V. Agafonov // Вопросы атомной науки и техники. — 2004. — № 1. — С. 131-133. — Бібліогр.: 9 назв. — англ.
1562-6016
PACS: 52.35.Mw
https://nasplib.isofts.kiev.ua/handle/123456789/78969
Two classes of approaches have received the most attention to describe the important space charge dynamics in a magnetron are Brillouin flow and double-stream kinetic model. Precise analysis of electron dynamics in fully selfconsistent kinetic equilibrium in a smooth-bore magnetron shows that for a given external magnetic field and a voltage there exists a multiplicity of natural equilibrium states, differing as to structure of electron trajectories and emission current density. The value of emission current density differs from one to other type of the equilibrium and can aspire to zero under the same condition of space charge limited flow due to a large number of revolutions of electrons around the cathode. The greater the number of revolutions the closer are the main parameters of the kinetic flow to Brillouin one. Work is supported by RFBR under grant 03-02-17301.
У рамках аналітичного підходу показано, що в коаксіальній магнетронній гарматі можливе існування багатозначних стаціонарних станів пучка при заданих значеннях зовнішніх параметрів (геометрія діода, напруга на пушку і зовнішнє магнітне поле), що відрізняються числом обертів електронів навколо катода і струмом, що емітується з катода. Показано можливість граничного переходу від кінетичного потоку до бриллюенівського потоку. Робота виконана за підтримкою гранта РФФД 03-02-17301.
В рамках аналитического подхода показано, что в коаксиальной магнетронной пушке возможно существование многозначных стационарных состояний пучка при заданных значениях внешних параметров (геометрия диода, напряжение на пушке и внешнее магнитное поле), отличающихся числом оборотов электронов вокруг катода и током, эмиттируемым с катода. Показана возможность предельного перехода от кинетического потока к потоку бриллюэновскому. Работа выполнена при поддержке гранта РФФИ 03-02-17301.
Work is supported by RFBR under grant 03-02-17301.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Динамика пучков
Brillouin and kynetic flows in a magnetron diode
Бриллюенівський і кінетичний потоки у магнетронній гарматі
Бриллюэновский и кинетический потоки в магнетронной пушке
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Brillouin and kynetic flows in a magnetron diode
spellingShingle Brillouin and kynetic flows in a magnetron diode
Agafonov, A.V.
Динамика пучков
title_short Brillouin and kynetic flows in a magnetron diode
title_full Brillouin and kynetic flows in a magnetron diode
title_fullStr Brillouin and kynetic flows in a magnetron diode
title_full_unstemmed Brillouin and kynetic flows in a magnetron diode
title_sort brillouin and kynetic flows in a magnetron diode
author Agafonov, A.V.
author_facet Agafonov, A.V.
topic Динамика пучков
topic_facet Динамика пучков
publishDate 2004
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Бриллюенівський і кінетичний потоки у магнетронній гарматі
Бриллюэновский и кинетический потоки в магнетронной пушке
description Two classes of approaches have received the most attention to describe the important space charge dynamics in a magnetron are Brillouin flow and double-stream kinetic model. Precise analysis of electron dynamics in fully selfconsistent kinetic equilibrium in a smooth-bore magnetron shows that for a given external magnetic field and a voltage there exists a multiplicity of natural equilibrium states, differing as to structure of electron trajectories and emission current density. The value of emission current density differs from one to other type of the equilibrium and can aspire to zero under the same condition of space charge limited flow due to a large number of revolutions of electrons around the cathode. The greater the number of revolutions the closer are the main parameters of the kinetic flow to Brillouin one. Work is supported by RFBR under grant 03-02-17301. У рамках аналітичного підходу показано, що в коаксіальній магнетронній гарматі можливе існування багатозначних стаціонарних станів пучка при заданих значеннях зовнішніх параметрів (геометрія діода, напруга на пушку і зовнішнє магнітне поле), що відрізняються числом обертів електронів навколо катода і струмом, що емітується з катода. Показано можливість граничного переходу від кінетичного потоку до бриллюенівського потоку. Робота виконана за підтримкою гранта РФФД 03-02-17301. В рамках аналитического подхода показано, что в коаксиальной магнетронной пушке возможно существование многозначных стационарных состояний пучка при заданных значениях внешних параметров (геометрия диода, напряжение на пушке и внешнее магнитное поле), отличающихся числом оборотов электронов вокруг катода и током, эмиттируемым с катода. Показана возможность предельного перехода от кинетического потока к потоку бриллюэновскому. Работа выполнена при поддержке гранта РФФИ 03-02-17301.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/78969
citation_txt Brillouin and kynetic flows in a magnetron diode / A.V. Agafonov // Вопросы атомной науки и техники. — 2004. — № 1. — С. 131-133. — Бібліогр.: 9 назв. — англ.
work_keys_str_mv AT agafonovav brillouinandkyneticflowsinamagnetrondiode
AT agafonovav brillûenívsʹkiiíkínetičniipotokiumagnetronníigarmatí
AT agafonovav brillûénovskiiikinetičeskiipotokivmagnetronnoipuške
first_indexed 2025-11-26T00:09:48Z
last_indexed 2025-11-26T00:09:48Z
_version_ 1850594212804820992
fulltext BEAM DYNAMICS BRILLOUIN AND KYNETIC FLOWS IN A MAGNETRON DIODE A.V. Agafonov Lebedev Physical Institute, 53, Leninsky pr., Moscow, V-333, GSP-1, 119991, Russia; E-mail: agafonov@sci.lebedev.ru Two classes of approaches have received the most attention to describe the important space charge dynamics in a magnetron are Brillouin flow and double-stream kinetic model. Precise analysis of electron dynamics in fully self- consistent kinetic equilibrium in a smooth-bore magnetron shows that for a given external magnetic field and a voltage there exists a multiplicity of natural equilibrium states, differing as to structure of electron trajectories and emission current density. The value of emission current density differs from one to other type of the equilibrium and can aspire to zero under the same condition of space charge limited flow due to a large number of revolutions of electrons around the cathode. The greater the number of revolutions the closer are the main parameters of the kinetic flow to Brillouin one. Work is supported by RFBR under grant 03-02-17301. PACS: 52.35.Mw 1. INTRODUCTION Despite the great number of works about magnetron operation, a detailed description of electron dynamics under strong space charge influence is complicated by the non-linear nature of a field-particles system. In par- ticular, there is no satisfactory solution even to the prob- lem of electron flow formation in a magnetron with a smooth anode (a coaxial magnetron diode). In the work presented here it is shown that within the framework of accepted kinetic descriptions of a coaxial magnetron di- ode, multiple steady states of electron flow are possible for a given diode geometry and the same set of external parameters (applied voltage and external magnetic field). These states are distinguished by the number of electron revolutions around the cathode and the current emitted from the cathode. Direct transition from kinetic flows to Brillouin flow as a limit is shown. Numerical simulation helps to investigate the dependence of steady state properties of electron flow on its history of forma- tion. Comparison of analytical data and results of nu- merical simulation is made with the purpose to analyse the conditions of applicability for existing analytical models. 2. THEORETICAL MODELS Usually it is supposed for a magnetron that at the initial stage a magnetically insulated axially symmetric rotating electronic flow is formed. As a rule, the de- scription of the electron flow is based on two models: a hydrodynamic parapotential model, or a Brillouin flow [1,2], in which electrons rotate along the circular traject- ories around the cathode [3,4], in which electrons move along cycloid trajectories, beginning and coming to the end on the cathode surface. It is necessary to emphasise that in the latter case it was always supposed that an electron makes a single revolution along a cycloid inde- pendent of the geometry of the diode (plane or cyl- indrical). It is easy to show for a plane diode that at the top of the cycloid trajectory the radial velocity and electro- magnetic force both are equal to zero. Thus it is possible to "connect" another descending (that usually is done), or ascending trajectory, then continuing them symmet- rically up to the cathode, i.e. the top of trajectories in the plane diode is a point of solution branching. But for a coaxial cylindrical diode it was shown [5,6] that artificial connecting of trajectories is im- possible: the cylindrical metrics removes degeneration. And the structure of a kinetic flow differs in that the an- gular movement of electrons around an axis can signi- ficantly exceed 2π. The more the number of electron re- volutions, the greater the time the electron stays in the diode gap, and there should be less emission current from the cathode surface. Thus, the steady state of an electron flow depends on the value of the emission cur- rent chosen (and an electric field on the cathode surface equal to zero corresponding to a space charge limited current; but the value of the emitted current is much less than the limiting current and, basically, can approach to zero). 3. BRILLOUIN (PARAPOTENTIAL) MOD- EL [1] A system of units in which c =e = me = 1 is hereafter used. The electronic flow consists of circular trajectories with radii r filling completely or partially the gap between the cathode with radius rk and anode with radi- us ra: rk < r < re, re ≤ ra. Outer (boundary) parameters - anode voltage (γa –1) and (kept in a short pulse regime) average value of mag- netic induction in the diode gap B0 - are connected to parameters of an electronic flow by the relations 2 2 2 0 2 2 2 2 0 0 ln , ( )(1 ) ln , 2 2 eA e r a a e e e e a k a k a a e e r dx r C x x rr E r r r r rr A B r A B γ γ = + + = + − − = = + ∫ from which in that specific case re = ra (electronic flow occupies the whole anode-cathode space) is essentially only the last relation between an average magnetic in- duction and diode voltage: 2 2 2 0( ) 2 1.a k a ar r B r γ− = − 4. KINETIC (EMISSIONING) MODEL [4] ___________________________________________________________ PROBLEMS OF ATOMIC SIENCE AND TECHNOLOGY. 2004. № 1. Series: Nuclear Physics Investigations (42), p.131-133. 131 This analytical model, supposing presence of an emission current from the cathode coming back on the cathode, is described by a system of equations for γ(r) and A(r): 0 2 2 0 2 2 1 ( ) , 1 1( ) , 1 1, , fd dr r dr dr r A fd d ArA dr r dr r A d dE rA B dr r dr γ γ γ γ γ = − − = − − = = where the constant f0 is proportional to density of cath- ode emission current. On the cathode γ(rk) =1, A(rk) =0, E(rk) =0, B(rk)= Bk, and the outer boundary of electron flow is at radius re, at which electrons turn back to the cathode and the radial pulse of electrons 2 21rp Aγ= − − is equal to zero. In this model anode voltage and average value of magnetic induction are connected to parameters of an electronic flow by the re- lations: 2 2 2 2 0 ln , . 2 2 a a e e e e a k a k a a e e e rr E r r r r rr A B r A B γ γ= + − − = = + The results of calculations on these models are shown in Fig. for the same external conditions (voltage and ex- ternal magnetic flux) and with zero electric field on the cathode. The Brillouin smooth solution and three kinetic ones from a set of possible number of layers (n = 1,2,4) are shown. With increasing number of layers, emission current from the cathode tends to zero, electrons make more and more revolutions before coming back to the cathode, and a kinetic solution gradually approaches the Brillouin one. In the situation when magnetic field is much stronger than electric field, the Brillouin solution Kinetic (n=1,2,4) and Brillouin models of a rotating beam (E(r) upper, B(r) lower) for the same external conditions (voltage and magnetic flux) appears to be the only possible one. Thus the kinetic solution occurs only if the electric field on the cathode is not equal to zero. We note that in the inverted mag- netron diode (with the anode on inner surface) only a single-layer kinetic solution exists, which points to the essential influence of the cylindricity on the electron flow within the diode. In the "plane" approximation for the kinetic model the criterion for restriction of number of layers by any value is not presented, and the usual choice of n=1 is in essence arbitrary. Defining 2 21p Aγ= − − and introducing the new variable t the system can be written in the following form for numerical integration 0 2 0 , , ( ) , ( ) , , d d dr p pE rE f dt dt dt fd d d ArA rpB B A p E AB dt dt r dt r γ γ γ = = = = = = − + with initial conditions for t = 0: , 1, 0, 0, , 0.k kr r E A B B pγ= = = = = = Using the notations 0 1 2 3 4 5, 1, , , ,x r x x rE x rA x B x pγ= = − = = = = the final form of the system for numerical integration can be written as / 0 5 / 2 5 1 0 / 2 1 0 / 3 0 4 5 / 3 4 0 2 0 2 / 1 2 2 3 0 3 4 5 0 , , (1 ) , , , ( / ) . x x x xx x x x f x x x x xx f x x x x x x x xx x = = = + = = + + −= Initial step for numerical integration is calculated using the following expansion in series of a necessary high or- der obtained by means of MATHEMATICA 2.2: 3 2 2 3 0 0 0 2 2 4 2 2 0 1 2 2 4 0 2 0 2 3 2 2 3 0 3 2 2 4 2 2 6 0 0 4 2 2 2 2 2 0 5 (1 ), 6 20 30 (1 ), 188 (1 ), 40 (1 ), 6 20 20 (1 ), 24 720 (1 ). 2 12 k k k k k k k k k k k k k k k k k f t B t f tx r r r f t B tx r f tx f t r f B t B t B tx r f t f B tx B r r f t B tx r = + − − = − = + = − + = + − = − 5. TEMPORAL EFFECTS AND THEORETI- CAL MODELS Discussion of effects observed in a magnetron di- ode had, as its basic purpose, to show that theoretical models describing one and the same situation, actually correspond to various physical conditions. We shall il- 132 lustrate this by an example, comparing analytical results and numeric simulation realised with a PIC-code KAR- AT [7]. Modelling of particle emission in the KARAT code can be realised in two ways: (1) by setting the law for temporal change of the emitted current, the value of which can be less than, or more than the limiting cur- rent, the applied voltage being fixed (this situation cor- responds to emission from photocathodes or external in- jection of a beam through the surface of the emitter); and (2) by setting the law for temporal rising of diode voltage to some constant value, the emission current be- ing fixed at a value greatly exceeding the value limited by the space charge (this situation corresponds to the thermionic cathode). Typical distribution functions of particles in these two cases are different. In the first case a single electron revolution in a cycloid is realised (symmetric two-peak distribution of electrons on a pulse pr) without accumu- lation of charge in an accelerating gap; in the second case - symmetric distribution of particles on a pulse pr with electron capture during voltage increase, growth of number of particles in the diode gap and multiturn dy- namics of electrons. 6. DISCUSSION Both theoretical models give about the same physic- al results. Recall that the equations describing Brillouin flow can be deduced on the basis of the same approach used for the kinetic model [8, 9]. Under conditions of conservation of full particle energy and canonical angu- lar momentum ( ) ,P r p A constθ θ= + = the next general set of equations can be derived: / 2 / / / 2 / 2 / / / ( ) ( ) 0, ( ) ( ) 0, z z v Pr v v v Pr v r r r θ θ θ θ θ γ γ γγ γ + = − − = where the prime denotes d/dr. For the case of a cathode surface coinciding with a magnetic flux surface we have Pθ = const and 2 / .zr v constγ = The constant equals to zero (i.e., vz = const in this case and we have the same equations as in [9]. Therefore, it is not surprising that a direct transition exists from the kinetic flow to a Brillouin one as a limit. 7. CONCLUSION Precise analysis of electron dynamics in fully self- consistent kinetic equilibrium in the smooth-bore mag- netron shows that for a given external magnetic field and a voltage there exists a multiplicity of natural equi- librium states, differing as to structure of electron tra- jectories and emission current density. The value of the emission current density differs from one to other type of the equilibrium and can aspire to zero under the same condition of the space charge limited flow due to the different number of revolutions of electrons around the cathode. REFERENCES 1. A.V.Agafonov, V.S.Voronin, A.N.Lebedev, K.N. Pazin // Sov. JTF. 1974, v.44, p.1909. 2. J.M.Creedon // J. Appl. Phys. 1977, v.48, p.1070. 3. R.V.Lovelace, Ott E. // Phys. Fluids. 1974, v.17, p.1263. 4. V.S.Voronin, A.N.Lebedev // Sov. JTP. 1973, v.43, p.2591. 5. A.V.Agafonov, D.B.Orlov // Proceed. of the 1989 IEEE PAC, Chicago, USA, v.2, p.1397. 6. A.V.Agafonov, V.S.Voronin // Proceed. of the 1997 IEEE PAC, Vancouver, Canada, v.2, p.1302. 7. P.V.Kotetashwily, P.V.Rybak, V.P.Tarakanov. In- stitute of General Physics: Preprint N 44, Moscow, Russia, 1991. 8. M.Raiser // Phys. Fluids. 1974, v.20, p.477. 9. A.V.Agafonov // Proceed. of the 1995 IEEE PAC, Dallas, USA, v.5, p.3272. БРИЛЛЮЭНОВСКИЙ И КИНЕТИЧЕСКИЙ ПОТОКИ В МАГНЕТРОННОЙ ПУШКЕ А.В. Агафонов В рамках аналитического подхода показано, что в коаксиальной магнетронной пушке возможно существование многозначных стационарных состояний пучка при заданных значениях внешних параметров (геометрия диода, напряжение на пушке и внешнее магнитное поле), отличающихся числом оборотов электронов вокруг катода и током, эмиттируемым с катода. Показана возможность предельного перехода от кинетического потока к потоку бриллюэновскому. Работа выполнена при поддержке гранта РФФИ 03-02- 17301. БРИЛЛЮЕНІВСЬКИЙ І КІНЕТИЧНИЙ ПОТОКИ У МАГНЕТРОННІЙ ГАРМАТІ А.В. Агафонов У рамках аналітичного підходу показано, що в коаксіальній магнетронній гарматі можливе існування багатозначних стаціонарних станів пучка при заданих значеннях зовнішніх параметрів (геометрія діода, напруга на пушку і зовнішнє магнітне поле), що відрізняються числом обертів електронів навколо катода і струмом, що емітується з катода. Показано можливість граничного переходу від кінетичного потоку до бриллюенівського потоку. Робота виконана за підтримкою гранта РФФД 03-02-17301. ___________________________________________________________ PROBLEMS OF ATOMIC SIENCE AND TECHNOLOGY. 2004. № 1. Series: Nuclear Physics Investigations (42), p.131-133. 133 Бриллюэновский и кинетический потоки в магнетронной пушке