Forming electron beam pulses of a subnanosecond duration

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Вопросы атомной науки и техники
Datum:2001
Hauptverfasser: Dovbnya, A.N., Zakutin, V.V., Reshetnyak, N.G., Romas’ko, V.P., Shenderovitch, A.M., Semenets, T.A., Volkolupov, Yu.Ya., Krasnogolovets, M.A.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2001
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/79016
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Forming electron beam pulses of a subnanosecond duration / A.N. Dovbnya, V.V.Zakutin, N.G.Reshetnyak, V.P. Romas’ko, A.M. Shenderovitch, T.A. Semenets, Yu.Ya. Volkolupov, M.A. Krasnogolovets // Вопросы атомной науки и техники. — 2001. — № 5. — С. 117-118. — Бібліогр.: 7 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-79016
record_format dspace
spelling Dovbnya, A.N.
Zakutin, V.V.
Reshetnyak, N.G.
Romas’ko, V.P.
Shenderovitch, A.M.
Semenets, T.A.
Volkolupov, Yu.Ya.
Krasnogolovets, M.A.
2015-03-24T17:27:15Z
2015-03-24T17:27:15Z
2001
Forming electron beam pulses of a subnanosecond duration / A.N. Dovbnya, V.V.Zakutin, N.G.Reshetnyak, V.P. Romas’ko, A.M. Shenderovitch, T.A. Semenets, Yu.Ya. Volkolupov, M.A. Krasnogolovets // Вопросы атомной науки и техники. — 2001. — № 5. — С. 117-118. — Бібліогр.: 7 назв. — англ.
1562-6016
PACS numbers: 29.17.+w
https://nasplib.isofts.kiev.ua/handle/123456789/79016
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Forming electron beam pulses of a subnanosecond duration
Формирование импульсов электронного пучка субнаносекундной длительности
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Forming electron beam pulses of a subnanosecond duration
spellingShingle Forming electron beam pulses of a subnanosecond duration
Dovbnya, A.N.
Zakutin, V.V.
Reshetnyak, N.G.
Romas’ko, V.P.
Shenderovitch, A.M.
Semenets, T.A.
Volkolupov, Yu.Ya.
Krasnogolovets, M.A.
title_short Forming electron beam pulses of a subnanosecond duration
title_full Forming electron beam pulses of a subnanosecond duration
title_fullStr Forming electron beam pulses of a subnanosecond duration
title_full_unstemmed Forming electron beam pulses of a subnanosecond duration
title_sort forming electron beam pulses of a subnanosecond duration
author Dovbnya, A.N.
Zakutin, V.V.
Reshetnyak, N.G.
Romas’ko, V.P.
Shenderovitch, A.M.
Semenets, T.A.
Volkolupov, Yu.Ya.
Krasnogolovets, M.A.
author_facet Dovbnya, A.N.
Zakutin, V.V.
Reshetnyak, N.G.
Romas’ko, V.P.
Shenderovitch, A.M.
Semenets, T.A.
Volkolupov, Yu.Ya.
Krasnogolovets, M.A.
publishDate 2001
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Формирование импульсов электронного пучка субнаносекундной длительности
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/79016
citation_txt Forming electron beam pulses of a subnanosecond duration / A.N. Dovbnya, V.V.Zakutin, N.G.Reshetnyak, V.P. Romas’ko, A.M. Shenderovitch, T.A. Semenets, Yu.Ya. Volkolupov, M.A. Krasnogolovets // Вопросы атомной науки и техники. — 2001. — № 5. — С. 117-118. — Бібліогр.: 7 назв. — англ.
work_keys_str_mv AT dovbnyaan formingelectronbeampulsesofasubnanosecondduration
AT zakutinvv formingelectronbeampulsesofasubnanosecondduration
AT reshetnyakng formingelectronbeampulsesofasubnanosecondduration
AT romaskovp formingelectronbeampulsesofasubnanosecondduration
AT shenderovitcham formingelectronbeampulsesofasubnanosecondduration
AT semenetsta formingelectronbeampulsesofasubnanosecondduration
AT volkolupovyuya formingelectronbeampulsesofasubnanosecondduration
AT krasnogolovetsma formingelectronbeampulsesofasubnanosecondduration
AT dovbnyaan formirovanieimpulʹsovélektronnogopučkasubnanosekundnoidlitelʹnosti
AT zakutinvv formirovanieimpulʹsovélektronnogopučkasubnanosekundnoidlitelʹnosti
AT reshetnyakng formirovanieimpulʹsovélektronnogopučkasubnanosekundnoidlitelʹnosti
AT romaskovp formirovanieimpulʹsovélektronnogopučkasubnanosekundnoidlitelʹnosti
AT shenderovitcham formirovanieimpulʹsovélektronnogopučkasubnanosekundnoidlitelʹnosti
AT semenetsta formirovanieimpulʹsovélektronnogopučkasubnanosekundnoidlitelʹnosti
AT volkolupovyuya formirovanieimpulʹsovélektronnogopučkasubnanosekundnoidlitelʹnosti
AT krasnogolovetsma formirovanieimpulʹsovélektronnogopučkasubnanosekundnoidlitelʹnosti
first_indexed 2025-11-27T06:44:44Z
last_indexed 2025-11-27T06:44:44Z
_version_ 1850802171352711168
fulltext FORMING ELECTRON BEAM PULSES OF A SUBNANOSECOND DURATION A.N. Dovbnya, V.V.Zakutin, N.G.Reshetnyak, V.P. Romas’ko, A.M. Shenderovitch, T.A. Semenets1, Yu.Ya.Volkolupov1, M.A. Krasnogolovets1 Scientific Research Complex “Accelerator”, National Science Center “Kharkov Institute of Physics and Technology” 1 Academicheskaya st., Kharkov, Ukraine, 61108 zakutin@kipt.kharkov.ua 1 KGTURE, Kharkov, Ukraine PACS numbers: 29.17.+w Production of high-intensity electron beams is con- nected with using considerable magnetic fields for the beam cross-sectional dimension maintaining. In this case it is possible to use the beam drift in crossed elec- tric and magnetic fields for producing nano- and subn- anosecond duration beams. In [2, 6] the method for pro- duction of electron beam current pulses of this duration using the above-mentioned effect is described. The method [2,7] consists in that the time depen- dence of the particle energy is introduced into the elec- tron beam during the beam current pulse. After that the beam separation based on particle energy and particle extraction in the energy range corresponding to the re- quired pulse duration takes place. The beam particle en- ergy dependence on time is produced by beam passing through the electric field E which is growing or falling during the time: T=τ*e*E*d/Δε, where: τ – the required duration of the electron beam current pulse; e – electron charge; d – beam path length in the electric field, Δε – energy range in which the par- ticle extraction is carried out. Low-duration beam pro- duction is realized with the help of the energy separator, where ΔU/U is the separator energy resolution. The sharp dependence of beam particle energy on time can be produced in a different ways. For this purpose mag- netron guns with secondary-emission cathodes can be used in which the voltage drop has a fast phase. Accord- ingly, the electron beam particle energies are of about several nanoseconds [6] while the beam currents are tens of amperes during the beam generation. It is possi- ble also to use the shorting discharger with a commuta- tion time of 2…10 ns during producing heavy-current beams (for example [1]). For high-intensity beam separators the energy resol- ution is limited mostly by space charge forces. The sep- arator with crossed fields [5] is free of this disadvantage and possesses a longitudinal and transverse dispersion. It is convenient to resolve the motion equation in crossed fields and to calculate space charge forces in a moving reference system, in which the electric field goes to zero and the task is reduced to the well-studied motion in a magnetic field [3, 5]. The space charge can be neglected at currents ~ 10 A, and to increase the beam current it is necessary to increase the magnetic and electric fields. Also the vacuum beam blanking is connected with the space charge presence [4]. In case of low beam ripples in a cylindrical chamber of a real size and particle energy being 50…100 keV the cut-off cur- rent of the vacuum blanking is ~ 100 A. So, the amper- age does not exceed several tens of amperes in the sep- arator with crossed fields and is limited by the vacuum breakdown between separator plates. 1 2 D Fig. 1. Energy particle separation can be carried out with the help of either magnetic or electric fields of deflector plates to which the nanosecond pulse generator is con- nected with the pulse rise time ~ 1 ns. In the first case these plates are connected at the end, in the second case they are open-ended. It is the second case which is inter- esting, when the deflector plates play the role of delay line capacitance. In this case the rate of voltage pulse propagation is selected to be equal to electron velocity and each of the beam particles will be situated in one transverse electric field during its motion. Within the duration of voltage pulse the electric field strength in- creases gradually which results in electron trajectory change. It is possible to extract electrons with a speci- fied energy spread, and accordingly, to form the elec- tron bunch of a low duration by placing the collimator at plate outputs. The minimum possible duration of the produced beams is limited by the beam selfrepulsion and increas- ing its size and divergence, by the influence of beam fi- nite size and the hole for its exit. Considering the point- ed limits it is practically possible to produce electron beams of about tens of nanoseconds. For checking out the main points of the method [1] ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2001. №5. Серия: Ядерно-физические исследования (39), с. 117-118. 117 mailto:zakutin@kipt.kharkov.ua we made a separator with crossed fields which produces a beam current of 4 A (see Fig. 1). The electron beam was formed in the heavy-current electron gun 2 with a blasting cathode [1], the beam particle energy depend- ence on time being formed with the help of voltage pulse shortening out with the shorting discharger P1 placed in liquid nitrogen. Marx generator 1 with high- voltage pulse up to 100 kV and duration up to 400 ns served as a power supply of the blasting cathode. The magnetic field was formed by a pulse solenoid S with an inhomogenity of ~10% on the beam trajectory. The electric field was formed by the parallel-sided plates C to which a direct voltage up to 30 kV was applied. The beam current at the exit was measured with the help of the measuring line D with a wave impedance of 50 Ohms and a transient time of ~0.2 ns. The dividers on the resistors served for measuring the cathode voltage and beam current. The separator had E≤ 30 kV/cm, H≤3 kOe, design resolution ~30%. The beam current I and cathode voltage U are shown in Fig. 2. The voltage decreasing duration was ~60 ns. Current and voltage splashes are caused by blasting cathode plasma instability. The current pulse duration IB at the exit is ~5 ns at the half-height, the current peak value is 4 A. Fig. 2. Using the methods of electron beam pulse produc- tion in crossed fields one can produce subnanosecond duration beams. Electron separators with crossed fields of a real size and real fields have an energy resolution of several of several percent, while beam currents being several tens of amperes. The main points of the method of second and nanosecond pulse beam production were proved by experiments. REFERENCES 1. A.N.Dedik, V.V.Zakutin, N.N.Nasonov et al. // Voprosy Atomnoj Nauki i Tekhniki, Seriya: Fizika Vysokikh Energiji i Atomnogo Yadra (1). 1975, v. 1, p. 32-36 (in Russian). 2. A.N.Dovbnya, V.V.Zakutin, A.M.Shenderovitch. Patent for invention of Ukraine № 15588, H05H3/00, Bulletin № 3, June 30, 1997 (in Russi- an). 3. L.D.Landau, E.M.Lifshits. Theory of Field. Mo- scow: Nauka, 1967, 460 p (in Russian). 4. R.Miller. Introduction to Physics of Heavy-Current Beams of Charged Particles. Moscow: Mir, 1984, 431 p (in Russian). 5. D.Roy. Characteristics of the Toroidal Monochro- mator by Calculation of Electron Energy Distribu- tion // Rev. Sci. Instrum. 1972, v. 43, # 3, p. 535-541. 6. Yu.Ya.Volkolupov, A.N.Dovbnya, V.V.Zakutin et al. // Zhurnal Tekhnicheskoj Fiziki. 2001, v. 71, No. 2, p. 98-104. 7. V.V.Zakutin, A.M.Shenderovitch. Patent for inven- tion of Ukraine № 19084, H05H5/00, Bulletin № 5, Nov. 25,1997. ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2001. №5. Серия: Ядерно-физические исследования (39), с. 118-118. 118