Forming electron beam pulses of a subnanosecond duration
Gespeichert in:
| Veröffentlicht in: | Вопросы атомной науки и техники |
|---|---|
| Datum: | 2001 |
| Hauptverfasser: | , , , , , , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2001
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/79016 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Forming electron beam pulses of a subnanosecond duration / A.N. Dovbnya, V.V.Zakutin, N.G.Reshetnyak, V.P. Romas’ko, A.M. Shenderovitch, T.A. Semenets, Yu.Ya. Volkolupov, M.A. Krasnogolovets // Вопросы атомной науки и техники. — 2001. — № 5. — С. 117-118. — Бібліогр.: 7 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-79016 |
|---|---|
| record_format |
dspace |
| spelling |
Dovbnya, A.N. Zakutin, V.V. Reshetnyak, N.G. Romas’ko, V.P. Shenderovitch, A.M. Semenets, T.A. Volkolupov, Yu.Ya. Krasnogolovets, M.A. 2015-03-24T17:27:15Z 2015-03-24T17:27:15Z 2001 Forming electron beam pulses of a subnanosecond duration / A.N. Dovbnya, V.V.Zakutin, N.G.Reshetnyak, V.P. Romas’ko, A.M. Shenderovitch, T.A. Semenets, Yu.Ya. Volkolupov, M.A. Krasnogolovets // Вопросы атомной науки и техники. — 2001. — № 5. — С. 117-118. — Бібліогр.: 7 назв. — англ. 1562-6016 PACS numbers: 29.17.+w https://nasplib.isofts.kiev.ua/handle/123456789/79016 en Національний науковий центр «Харківський фізико-технічний інститут» НАН України Вопросы атомной науки и техники Forming electron beam pulses of a subnanosecond duration Формирование импульсов электронного пучка субнаносекундной длительности Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Forming electron beam pulses of a subnanosecond duration |
| spellingShingle |
Forming electron beam pulses of a subnanosecond duration Dovbnya, A.N. Zakutin, V.V. Reshetnyak, N.G. Romas’ko, V.P. Shenderovitch, A.M. Semenets, T.A. Volkolupov, Yu.Ya. Krasnogolovets, M.A. |
| title_short |
Forming electron beam pulses of a subnanosecond duration |
| title_full |
Forming electron beam pulses of a subnanosecond duration |
| title_fullStr |
Forming electron beam pulses of a subnanosecond duration |
| title_full_unstemmed |
Forming electron beam pulses of a subnanosecond duration |
| title_sort |
forming electron beam pulses of a subnanosecond duration |
| author |
Dovbnya, A.N. Zakutin, V.V. Reshetnyak, N.G. Romas’ko, V.P. Shenderovitch, A.M. Semenets, T.A. Volkolupov, Yu.Ya. Krasnogolovets, M.A. |
| author_facet |
Dovbnya, A.N. Zakutin, V.V. Reshetnyak, N.G. Romas’ko, V.P. Shenderovitch, A.M. Semenets, T.A. Volkolupov, Yu.Ya. Krasnogolovets, M.A. |
| publishDate |
2001 |
| language |
English |
| container_title |
Вопросы атомной науки и техники |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| format |
Article |
| title_alt |
Формирование импульсов электронного пучка субнаносекундной длительности |
| issn |
1562-6016 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/79016 |
| citation_txt |
Forming electron beam pulses of a subnanosecond duration / A.N. Dovbnya, V.V.Zakutin, N.G.Reshetnyak, V.P. Romas’ko, A.M. Shenderovitch, T.A. Semenets, Yu.Ya. Volkolupov, M.A. Krasnogolovets // Вопросы атомной науки и техники. — 2001. — № 5. — С. 117-118. — Бібліогр.: 7 назв. — англ. |
| work_keys_str_mv |
AT dovbnyaan formingelectronbeampulsesofasubnanosecondduration AT zakutinvv formingelectronbeampulsesofasubnanosecondduration AT reshetnyakng formingelectronbeampulsesofasubnanosecondduration AT romaskovp formingelectronbeampulsesofasubnanosecondduration AT shenderovitcham formingelectronbeampulsesofasubnanosecondduration AT semenetsta formingelectronbeampulsesofasubnanosecondduration AT volkolupovyuya formingelectronbeampulsesofasubnanosecondduration AT krasnogolovetsma formingelectronbeampulsesofasubnanosecondduration AT dovbnyaan formirovanieimpulʹsovélektronnogopučkasubnanosekundnoidlitelʹnosti AT zakutinvv formirovanieimpulʹsovélektronnogopučkasubnanosekundnoidlitelʹnosti AT reshetnyakng formirovanieimpulʹsovélektronnogopučkasubnanosekundnoidlitelʹnosti AT romaskovp formirovanieimpulʹsovélektronnogopučkasubnanosekundnoidlitelʹnosti AT shenderovitcham formirovanieimpulʹsovélektronnogopučkasubnanosekundnoidlitelʹnosti AT semenetsta formirovanieimpulʹsovélektronnogopučkasubnanosekundnoidlitelʹnosti AT volkolupovyuya formirovanieimpulʹsovélektronnogopučkasubnanosekundnoidlitelʹnosti AT krasnogolovetsma formirovanieimpulʹsovélektronnogopučkasubnanosekundnoidlitelʹnosti |
| first_indexed |
2025-11-27T06:44:44Z |
| last_indexed |
2025-11-27T06:44:44Z |
| _version_ |
1850802171352711168 |
| fulltext |
FORMING ELECTRON BEAM PULSES OF
A SUBNANOSECOND DURATION
A.N. Dovbnya, V.V.Zakutin, N.G.Reshetnyak, V.P. Romas’ko, A.M. Shenderovitch,
T.A. Semenets1, Yu.Ya.Volkolupov1, M.A. Krasnogolovets1
Scientific Research Complex “Accelerator”,
National Science Center “Kharkov Institute of Physics and Technology”
1 Academicheskaya st., Kharkov, Ukraine, 61108
zakutin@kipt.kharkov.ua
1 KGTURE, Kharkov, Ukraine
PACS numbers: 29.17.+w
Production of high-intensity electron beams is con-
nected with using considerable magnetic fields for the
beam cross-sectional dimension maintaining. In this
case it is possible to use the beam drift in crossed elec-
tric and magnetic fields for producing nano- and subn-
anosecond duration beams. In [2, 6] the method for pro-
duction of electron beam current pulses of this duration
using the above-mentioned effect is described.
The method [2,7] consists in that the time depen-
dence of the particle energy is introduced into the elec-
tron beam during the beam current pulse. After that the
beam separation based on particle energy and particle
extraction in the energy range corresponding to the re-
quired pulse duration takes place. The beam particle en-
ergy dependence on time is produced by beam passing
through the electric field E which is growing or falling
during the time:
T=τ*e*E*d/Δε,
where: τ – the required duration of the electron beam
current pulse; e – electron charge; d – beam path length
in the electric field, Δε – energy range in which the par-
ticle extraction is carried out. Low-duration beam pro-
duction is realized with the help of the energy separator,
where ΔU/U is the separator energy resolution. The
sharp dependence of beam particle energy on time can
be produced in a different ways. For this purpose mag-
netron guns with secondary-emission cathodes can be
used in which the voltage drop has a fast phase. Accord-
ingly, the electron beam particle energies are of about
several nanoseconds [6] while the beam currents are
tens of amperes during the beam generation. It is possi-
ble also to use the shorting discharger with a commuta-
tion time of 2…10 ns during producing heavy-current
beams (for example [1]).
For high-intensity beam separators the energy resol-
ution is limited mostly by space charge forces. The sep-
arator with crossed fields [5] is free of this disadvantage
and possesses a longitudinal and transverse dispersion.
It is convenient to resolve the motion equation in
crossed fields and to calculate space charge forces in a
moving reference system, in which the electric field
goes to zero and the task is reduced to the well-studied
motion in a magnetic field [3, 5]. The space charge can
be neglected at currents ~ 10 A, and to increase the
beam current it is necessary to increase the magnetic
and electric fields. Also the vacuum beam blanking is
connected with the space charge presence [4]. In case of
low beam ripples in a cylindrical chamber of a real size
and particle energy being 50…100 keV the cut-off cur-
rent of the vacuum blanking is ~ 100 A. So, the amper-
age does not exceed several tens of amperes in the sep-
arator with crossed fields and is limited by the vacuum
breakdown between separator plates.
1
2
D
Fig. 1.
Energy particle separation can be carried out with
the help of either magnetic or electric fields of deflector
plates to which the nanosecond pulse generator is con-
nected with the pulse rise time ~ 1 ns. In the first case
these plates are connected at the end, in the second case
they are open-ended. It is the second case which is inter-
esting, when the deflector plates play the role of delay
line capacitance. In this case the rate of voltage pulse
propagation is selected to be equal to electron velocity
and each of the beam particles will be situated in one
transverse electric field during its motion. Within the
duration of voltage pulse the electric field strength in-
creases gradually which results in electron trajectory
change. It is possible to extract electrons with a speci-
fied energy spread, and accordingly, to form the elec-
tron bunch of a low duration by placing the collimator at
plate outputs.
The minimum possible duration of the produced
beams is limited by the beam selfrepulsion and increas-
ing its size and divergence, by the influence of beam fi-
nite size and the hole for its exit. Considering the point-
ed limits it is practically possible to produce electron
beams of about tens of nanoseconds.
For checking out the main points of the method [1]
ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2001. №5.
Серия: Ядерно-физические исследования (39), с. 117-118.
117
mailto:zakutin@kipt.kharkov.ua
we made a separator with crossed fields which produces
a beam current of 4 A (see Fig. 1). The electron beam
was formed in the heavy-current electron gun 2 with a
blasting cathode [1], the beam particle energy depend-
ence on time being formed with the help of voltage
pulse shortening out with the shorting discharger P1
placed in liquid nitrogen. Marx generator 1 with high-
voltage pulse up to 100 kV and duration up to 400 ns
served as a power supply of the blasting cathode. The
magnetic field was formed by a pulse solenoid S with an
inhomogenity of ~10% on the beam trajectory. The
electric field was formed by the parallel-sided plates C
to which a direct voltage up to 30 kV was applied. The
beam current at the exit was measured with the help of
the measuring line D with a wave impedance of
50 Ohms and a transient time of ~0.2 ns. The dividers
on the resistors served for measuring the cathode
voltage and beam current. The separator had E≤
30 kV/cm, H≤3 kOe, design resolution ~30%. The beam
current I and cathode voltage U are shown in Fig. 2.
The voltage decreasing duration was ~60 ns. Current
and voltage splashes are caused by blasting cathode
plasma instability. The current pulse duration IB at the
exit is ~5 ns at the half-height, the current peak value is
4 A.
Fig. 2.
Using the methods of electron beam pulse produc-
tion in crossed fields one can produce subnanosecond
duration beams. Electron separators with crossed fields
of a real size and real fields have an energy resolution of
several of several percent, while beam currents being
several tens of amperes. The main points of the method
of second and nanosecond pulse beam production were
proved by experiments.
REFERENCES
1. A.N.Dedik, V.V.Zakutin, N.N.Nasonov et al. //
Voprosy Atomnoj Nauki i Tekhniki, Seriya: Fizika
Vysokikh Energiji i Atomnogo Yadra (1). 1975,
v. 1, p. 32-36 (in Russian).
2. A.N.Dovbnya, V.V.Zakutin, A.M.Shenderovitch.
Patent for invention of Ukraine № 15588,
H05H3/00, Bulletin № 3, June 30, 1997 (in Russi-
an).
3. L.D.Landau, E.M.Lifshits. Theory of Field. Mo-
scow: Nauka, 1967, 460 p (in Russian).
4. R.Miller. Introduction to Physics of Heavy-Current
Beams of Charged Particles. Moscow: Mir, 1984,
431 p (in Russian).
5. D.Roy. Characteristics of the Toroidal Monochro-
mator by Calculation of Electron Energy Distribu-
tion // Rev. Sci. Instrum. 1972, v. 43, # 3,
p. 535-541.
6. Yu.Ya.Volkolupov, A.N.Dovbnya, V.V.Zakutin et
al. // Zhurnal Tekhnicheskoj Fiziki. 2001, v. 71,
No. 2, p. 98-104.
7. V.V.Zakutin, A.M.Shenderovitch. Patent for inven-
tion of Ukraine № 19084, H05H5/00, Bulletin № 5,
Nov. 25,1997.
ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2001. №5.
Серия: Ядерно-физические исследования (39), с. 118-118.
118
|