Composite materials formation for orthopaedic implants
One of most up-to-date problems of orthopaedy is the development of new materials for replacement of osseous tissue and cartilage defects. Electron beam (EB) processing of polymer composites with bioactive ceramics has been used for manufacture of artificial materials for orthopaedic implants. Exp...
Gespeichert in:
| Veröffentlicht in: | Вопросы атомной науки и техники |
|---|---|
| Datum: | 2004 |
| Hauptverfasser: | , , , , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2004
|
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/79067 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Composite materials formation or orthopaedic implants / A.M. Avilov, V.A. Deryuga, G.F. Popov, N.G. Popova, V.G. Rudychev, A.L. Shkilev // Вопросы атомной науки и техники. — 2004. — № 1. — С. 181-183. — Бібліогр.: 3 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-79067 |
|---|---|
| record_format |
dspace |
| spelling |
Avilov, A.M. Deryuga, V.A. Popov, G.F. Popova, N.G. Rudychev, V.G. Shkilev, A.L. 2015-03-25T20:20:26Z 2015-03-25T20:20:26Z 2004 Composite materials formation or orthopaedic implants / A.M. Avilov, V.A. Deryuga, G.F. Popov, N.G. Popova, V.G. Rudychev, A.L. Shkilev // Вопросы атомной науки и техники. — 2004. — № 1. — С. 181-183. — Бібліогр.: 3 назв. — англ. 1562-6016 PACS: 29.17.+w https://nasplib.isofts.kiev.ua/handle/123456789/79067 One of most up-to-date problems of orthopaedy is the development of new materials for replacement of osseous tissue and cartilage defects. Electron beam (EB) processing of polymer composites with bioactive ceramics has been used for manufacture of artificial materials for orthopaedic implants. Experimental approaches and problems of EB processing of composites based on ultra-high-molecular weight polyethylene (UHMWPE) are discussed. Однією з актуальних задач в ортопедії є пошук і розробка нових штучних матеріалів для заміщення кісткової тканини і хряща. Обробка полімерних композиційних матеріалів з біоактивною керамікою електронними пучками використовувалась для виготовлення штучних матеріалів ортопедичного призначення. Приводяться експериментальні досягнення і проблеми радіаційної технології отримання композитів на основі надвисокомолекулярного поліетилену. Одной из актуальных задач в ортопедии является поиск и разработка новых материалов для замены костной ткани и хряща. Обработка полимерных композиционных материалов с биоактивной керамикой электронными пучками использовалась для изготовления искусственных материалов для ортопедических имплантатов. Обсуждаются экспериментальные достижения и проблемы радиационной технологии обработки композитов на основе сверхвысокомолекулярного полиэтилена. The work was supported by the STCU, Kyiv, project #957. The authors wishes to express gratitude to Prof. N.Dedukh, Prof.V.Radchenko, and Dr. S.Malushkina, SJPI, for conducting of the full cycle testing of new composite materials on biocompatibility. en Національний науковий центр «Харківський фізико-технічний інститут» НАН України Вопросы атомной науки и техники Применение ускоренных пучков Composite materials formation for orthopaedic implants Розробка композиційних матеріалів для ортопедичних імплантатів Разработка композиционных материалов для ортопедических имплантатов Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Composite materials formation for orthopaedic implants |
| spellingShingle |
Composite materials formation for orthopaedic implants Avilov, A.M. Deryuga, V.A. Popov, G.F. Popova, N.G. Rudychev, V.G. Shkilev, A.L. Применение ускоренных пучков |
| title_short |
Composite materials formation for orthopaedic implants |
| title_full |
Composite materials formation for orthopaedic implants |
| title_fullStr |
Composite materials formation for orthopaedic implants |
| title_full_unstemmed |
Composite materials formation for orthopaedic implants |
| title_sort |
composite materials formation for orthopaedic implants |
| author |
Avilov, A.M. Deryuga, V.A. Popov, G.F. Popova, N.G. Rudychev, V.G. Shkilev, A.L. |
| author_facet |
Avilov, A.M. Deryuga, V.A. Popov, G.F. Popova, N.G. Rudychev, V.G. Shkilev, A.L. |
| topic |
Применение ускоренных пучков |
| topic_facet |
Применение ускоренных пучков |
| publishDate |
2004 |
| language |
English |
| container_title |
Вопросы атомной науки и техники |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| format |
Article |
| title_alt |
Розробка композиційних матеріалів для ортопедичних імплантатів Разработка композиционных материалов для ортопедических имплантатов |
| description |
One of most up-to-date problems of orthopaedy is the development of new materials for replacement of osseous tissue
and cartilage defects. Electron beam (EB) processing of polymer composites with bioactive ceramics has been used for
manufacture of artificial materials for orthopaedic implants. Experimental approaches and problems of EB processing of
composites based on ultra-high-molecular weight polyethylene (UHMWPE) are discussed.
Однією з актуальних задач в ортопедії є пошук і розробка нових штучних матеріалів для заміщення
кісткової тканини і хряща. Обробка полімерних композиційних матеріалів з біоактивною керамікою
електронними пучками використовувалась для виготовлення штучних матеріалів ортопедичного
призначення. Приводяться експериментальні досягнення і проблеми радіаційної технології отримання
композитів на основі надвисокомолекулярного поліетилену.
Одной из актуальных задач в ортопедии является поиск и разработка новых материалов для замены костной ткани и хряща. Обработка полимерных композиционных материалов с биоактивной керамикой электронными пучками использовалась для изготовления искусственных материалов для ортопедических имплантатов. Обсуждаются экспериментальные достижения и проблемы радиационной технологии обработки
композитов на основе сверхвысокомолекулярного полиэтилена.
|
| issn |
1562-6016 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/79067 |
| citation_txt |
Composite materials formation or orthopaedic implants / A.M. Avilov, V.A. Deryuga, G.F. Popov, N.G. Popova, V.G. Rudychev, A.L. Shkilev // Вопросы атомной науки и техники. — 2004. — № 1. — С. 181-183. — Бібліогр.: 3 назв. — англ. |
| work_keys_str_mv |
AT avilovam compositematerialsformationfororthopaedicimplants AT deryugava compositematerialsformationfororthopaedicimplants AT popovgf compositematerialsformationfororthopaedicimplants AT popovang compositematerialsformationfororthopaedicimplants AT rudychevvg compositematerialsformationfororthopaedicimplants AT shkileval compositematerialsformationfororthopaedicimplants AT avilovam rozrobkakompozicíinihmateríalívdlâortopedičnihímplantatív AT deryugava rozrobkakompozicíinihmateríalívdlâortopedičnihímplantatív AT popovgf rozrobkakompozicíinihmateríalívdlâortopedičnihímplantatív AT popovang rozrobkakompozicíinihmateríalívdlâortopedičnihímplantatív AT rudychevvg rozrobkakompozicíinihmateríalívdlâortopedičnihímplantatív AT shkileval rozrobkakompozicíinihmateríalívdlâortopedičnihímplantatív AT avilovam razrabotkakompozicionnyhmaterialovdlâortopedičeskihimplantatov AT deryugava razrabotkakompozicionnyhmaterialovdlâortopedičeskihimplantatov AT popovgf razrabotkakompozicionnyhmaterialovdlâortopedičeskihimplantatov AT popovang razrabotkakompozicionnyhmaterialovdlâortopedičeskihimplantatov AT rudychevvg razrabotkakompozicionnyhmaterialovdlâortopedičeskihimplantatov AT shkileval razrabotkakompozicionnyhmaterialovdlâortopedičeskihimplantatov |
| first_indexed |
2025-11-26T00:09:48Z |
| last_indexed |
2025-11-26T00:09:48Z |
| _version_ |
1850594220437405696 |
| fulltext |
COMPOSITE MATERIALS FORMATION
FOR ORTHOPAEDIC IMPLANTS
A.M. Avilov, V.A. Deryuga, G.F. Popov, N.G. Popova, V.G. Rudychev, A.L. Shkilev
Kharkov National University, P.O. Box 60, 61052, Kharkov, Ukraine;
E-mail: popov@univer.kharkov.ua
One of most up-to-date problems of orthopaedy is the development of new materials for replacement of osseous tissue
and cartilage defects. Electron beam (EB) processing of polymer composites with bioactive ceramics has been used for
manufacture of artificial materials for orthopaedic implants. Experimental approaches and problems of EB processing of
composites based on ultra-high-molecular weight polyethylene (UHMWPE) are discussed.
PACS: 29.17.+w
1. INTRODUCTION
Now there are no artificial materials that completely
satisfy all demands of medicine. The mechanical prop-
erties of human osseous tissue are very different from
those of inert metal alloys currently used in artificial
joints. This large mismatch in mechanical properties
causes bone resorption or loss around the implant, as
well as loosening of the artificial joint stem in the
medullar cavity. Ultra high-molecular weight polyethy-
lene (UHMWPE) used as a substitute for gristle is also
rigid, it is not of sufficient wear-resistance, it has little
adhesion to bone cement, that causes both decreasing of
a service life of the product and increasing of number of
surgical operations.
All previously mentioned puts a task for searching
of new materials for replacement of natural osseous and
gristle tissues. Polymeric composites with bioactive ce-
ramics are considered as the most appropriate candi-
dates to this role. Our investigations deals with research
and engineering studies of the use of EB processing of
artificial materials based on UHMWPE for construction
elements of orthopedic implants.
There are several competitive radiation-chemical
processes, which realize simultaneously in the polymer
composite under electron irradiation. Such processes are
the crosslinking of macromolecules and creation of spa-
tial structure in polymeric matrix of composite, the radi-
ation grafting of macromolecules to material of filler,
the destruction of macromolecules, the appearance of
long-lived free radicals, etc. Every of these processes
modifies selectively the different physical, mechanical,
and operation characteristics of irradiated composites.
The formation of conditions for preferential realization
of specific radiation-chemical processes permits pur-
posefully regulating the composite characteristics.
This work presents investigation results of influ-
ence of EB regimes irradiation, surrounding envi-
ronment, post-radiation treatments of UHMWPE on
variation of physical, mechanical, and operation
characteristics of the finished product of UHMW-
PE.
2. EB PROCESSING OF UHMWPE
The production technique of material for elastic ele-
ments of prostheses to be simultaneously the elements
of friction couples was elaborated. Cylinder and plate
samples were made by hot molding or by shaping under
pressure of UHMWPE powder (Tomsk, Russia) with
molecular weight distribution 2.5-4.7 million
grams/mole. The samples were made of conventional
UHMWPE and of UHMWPE reinforced by carbon,
glass fiber, cord, and textile.
The EB irradiation of UHMWPE samples was car-
ried out by pulsed electron accelerator with energy
range from 4 to 7 MeV, beam power up to 5 kW, in the
absorbed dose rate from 100 to 1200 Gy/s, and absorbed
dose within the range from 1 to 300 kGy [1]. EB pro-
cessing of UHMWPE was performed in vacuum, in
medium of the air or an inert gas. The absorbed dose
distribution of electron beam into irradiated samples
was measured by dosimetric film. An equalization of
electron depth dose distribution into one - and double-
sided irradiated compounds was conducted with help of
simulation tools ModeRTL [2]. To provide the dose dis-
tribution with enhanced uniformity ~ 5 to 10% special
semitransparent filters for beam electrons were designed
and made [3].
Under electron beam irradiation of UHMWPE basi-
cally two competitive radiation-chemical processes in-
fluence on properties of the finished product of
UHMWPE: crosslinking and generation of long-term
free radicals in bulk of UHMWPE. The radiation-in-
duced crosslinking creates a 3-D network (gel phase) in
the structure of UHMWPE that lead to significant
changing its properties.
The free radicals interact with oxygen, which diffus-
es into the composite volume from the surrounding air.
This process causes the scission of macromolecules of
UHMWPE and the decrease its molecular weight. As a
result, the wear of composite is increased. The wear
products cause the inflammatory reactions and lysis of
osseous tissue in the bone-joint boundary.
To minimize free radicals, we have investigated the
process of artificial ageing of UHMWPE-based com-
posites treated by pulsed electron beams. As result, an
EB treatment of hot samples in the temperature range
100…160 0C with subsequent annealing leads to mini-
mum value free radicals at end product.
Crosslink density was determined by placing irradi-
ated samples in hot xylene and measuring of gel phase
as well as by the use of Fourier Transform Infrared
Spectroscopy (FTIR) technique. Crosslink density was
measured by a spectrophotometer as the ratio of trans-
vinylene peak area at 965 cm-1 to the irradiation stable
peak area at 2020 cm-1. The control of concentration of
___________________________________________________________
PROBLEMS OF ATOMIC SIENCE AND TECHNOLOGY. 2004. № 1.
Series: Nuclear Physics Investigations (42), p.181-183. 181
free radicals in the irradiated samples in the course of
artificial aging was performed by the value of the oxida-
tion index (OI). OI was determined as the ratio of car-
bonyl peak area at 1717 cm-1 to the radiation stable peak
area at 1370 cm-1.
Typical infrared absorption spectrums for UHMW-
PE specimen with thickness of 200 μm which was
EB-irradiated in an air (Curve 2) (absorbed dose
100 kGy) and for unirradiated specimen (Curve1) are
shown in Fig.1.
Fig.1. Infrared absorption spectrum for UHMWPE ir-
radiated by EB in an air (2) and unirradiated (1)
The following physical, mechanical and operation
characteristics for conventional and crosslinked
UHMWPE were tested versus absorbed EB dose and
dose rate: elastic modulus, ultimate tensile strength (σ),
elongation at break (ε), micro-hardness (H), and wear
rate. Elastic modulus, ultimate tensile strength and elon-
gation at rupture were measured on tensile-testing ma-
chines and by acoustic methods.
Two different type of hip joint simulators were used
for in vitro investigation of the wear rate for the
crosslinked UHMWPE specimens. The first one a pin-
on-disk hip simulator was used as the test device for the
accelerated wear rate examining. The dependence of the
wear rate of the composite on the sliding distance was
investigated. The investigations were carried out as for
dry friction, as in the presence of a lubricant i.e., dis-
tilled water, physiological solution or bovine serum.
The measurements of wear of the composite were per-
formed by gravimetric method after every 1000 m of the
sliding distance.
The second one a friction couple type of hip simula-
tor was used for long-term examination of the wear rate
for UHMWPE specimens. A friction couple consisting
of a spherical insert of UHMWPE based composite with
counterface of a highly polished sphere of stainless steel
with diameter 32 mm was immersed in physiological
solution or bovine serum as lubricants. Insert imitates
acetabulum, and a polished sphere of stainless steel imi-
tates the head and the neck of the hip joint. Wear rate of
the inserts was examined at their cyclic loading up to
100 kg in the range of 5·105…3·106 cycles by gravimet-
ric technique.
The influence of absorbed dose on variation of phys-
ical, mechanical and operation characteristics of
UHMWPE irradiated by pulsed EB with electron energy
6 MeV are shown in Fig.2 and 3. Heated to temperature
120 0C the UHMWPE specimens were irradiated in ar-
gon environment. After irradiation the specimens were
annealed at temperature 140 0C under vacuum for 4
hours. Characteristics testing of radiation-modified
UHMWPE specimens was performed at temperature
25 0C.
Fig.2. Effect of an absorbed dose on the ultimate tensile
strength (1), micro-hardness (2), and elongation (3) of
UHMWPE
Fig.3. Effect of an absorbed dose on the gravimetric
wear rate of UHMWPE
As a result of investigations it was shown, that the
minimum of oxidation index into irradiated UHMWPE
specimens is observed at a maximal dose rate and re-
spectively at minimal irradiation time. For example, ir-
radiation of UHMWPE wit EB in air results in increas-
ing of the dose rate from 100 Gy/s to 1.2 kGy/s leading
to decreasing of the oxidation index and, respectively,
of the number of free radicals in 6 times. The minimum
gravimetric wear rate of about 2 mg/(million cycles) and
minimum of free radicals was observed in the
crosslinked UHMWPE, which was irradiated by the
electron dose higher than 90 kGy at specimen tempera-
ture of 120 to 1500C in vacuum or in inert gas with sub-
sequent thermal annealing.
3. GRAFTING OF MMA ON UHMWPE
In restorative surgery of joints many artificial im-
plants are fixed to living bone by bone cement. The ba-
sis of composition of bone cement is polymethyl-
methacrylate (PMMA) or other acrylic polymers. Im-
plants from UHMWPE have weak adhesion to bone ce-
ment. For increasing adhesion of UHMWPE to bone ce-
ment, the investigation of radiation grafting of MMA
monomer on surface of UHMWPE were performed.
The radiation-induced graft copolymerization of
MMA was carried out on the surface of UHMWPE
plates to be preliminarily irradiated by 6 MeV EB in the
air with subsequent heating in contact with solution of
182
MMA monomer in methanol. This is so-called the graft
copolymerization on the base of the post-effect. In this
case, the copolymerization in a boundary layer on
UHMWPE surface occurs under heating due to free rad-
icals. These ones are generated in the course of decom-
position of peroxides and hydroperoxides appearing un-
der irradiation. To prevent homopolymerization of
MMA monomer, saline Fe2SO4 • 7 H2O was added in
the MMA solution.
The values of degree of the MMA radiation grafting
at a surface of UHMWPE samples were obtained exper-
imentally in the range from 1 to 50 mg/cm2. EB treat-
ment of UHMWPE samples was conducted within the
range of absorbed dose from 1 to 40 kGy. Free radicals
were extracted from UHMWPE plates after radiation
grafting by artificial aging of heated samples in oxyge-
nous environment.
UHMWPE and PMMA samples were connected to-
gether by bone cement "PALACOS R", GmbH Germany
containing 90% of PMMA. The tensile bonding strength
between bone cement and UHMWPE samples with radia-
tion-induced grafted MMA increased up to 80 times in
comparison with the samples without radiation grafting.
Realizations of the principal possibility of a
crosslinking of a thin UHMWPE layer and a graft
copolymerization of MMA on the bearing surface of
UHMWPE specimens by an irradiation of the thin sur-
face layer with a thickness ~15…40 μm by low energy
electrons were shown experimentally. Electrons with
the energy in the range 150-200 keV were generated by
the X-ray pulsed apparatus MIRA-2D with the electron
tube IMAE-150E. Electron beam current parameters
were the following: pulse duration of 15 ns, pulse repe-
tition rate of 10 Hz, number of electrons per pulse of
about 5.1012. Such an irradiation mode avoids modifica-
tion of physical and mechanical properties of the bulk
material and essentially reduces a time of post-irradia-
tion treatment of UHMWPE specimens.
One of the features of new composites is the inclu-
sion in their structure of biologically active ceramics in
the form of powder or granules. The bioceramics is in-
troduced into a composite as the constituent over all
volume or in the form of coatings. Calcium phosphate
compounds - hydroxyapatite (HA) and tricalcium phos-
phate (TCP) were used as bioceramics. HA and TCP are
the basic inorganic components of the hard tissues of an
organism. HA and TCP show excellent biocompatibility
and are well integrated with bone tissues due to interac-
tions at the interface and growing of new tissues into its
pore structure. The inclusion of bioceramics into the
structure of composites leads to effective osteointegra-
tion of composite material with living bone and creation
of firm biomechanical interface.
All new composite materials were examined on bio-
compatibility, cytotoxicity and carcinogenicity. For
these purposes, an express method of cultivation of cel-
lular culture was used. The osteointegration of сompos-
ite materials with living tissue, the process of bone tis-
sue formation at the surface and into composite materi-
als were investigated on rats and rabbits.
4. CONCLUSION
EB processing was used for radiation modification
and manufacture of artificial materials based on
UHMWPE for construction elements of orthopaedic im-
plants. It was shown that a formation of conditions for
preferential realization of specific radiation-chemical
processes under EB processing of UHMWPE based
composites permits programmable to regulate their
physical, mechanical, and operation characteristics. In
vitro examination using the hip joint simulator of wear
rate of UHMWPE was carried out. The minimum gravi-
metric wear rate about 2 mg/(million cycles) and mini-
mum of free radicals was observed in the crosslinked
UHMWPE, which was irradiated by the electron dose
higher than 90 kGy. EB-induced grafting of MMA at
the surface of UHMWPE samples significantly increase
its adhesion to bone cement.
5. ACKNOWLEDGMENTS
The work was supported by the STCU, Kyiv, project
#957. The authors wishes to express gratitude to Prof.
N.Dedukh, Prof.V.Radchenko, and Dr. S.Malushkina,
SJPI, for conducting of the full cycle testing of new
composite materials on biocompatibility.
REFERENCES
1. A. Avilov, V. Deryuga, S. Korenev, G. Popov:
Abstract book of EBT’00 Conf., Varna, Bulgaria,
2000, p. 86-87.
2. V.T. Lazurik, V.M. Lazurik, G. Popov, Yu. Rogov
// Proceed. of EBT’03 Conf. Varna, Bulgaria, 2003,
p.616-622.
3. A. Lisitsky, S. Pismenesky, G. Popov, V. Rudy-
chev // Radiation Physics and Chemistry. 2002, Is-
sue 3-6, v. 63, p. 591-594.
РАЗРАБОТКА КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ ДЛЯ ОРТОПЕДИЧЕСКИХ ИМПЛАНТАТОВ
О.М. Авилов, В.О. Дерюга, Г.Ф. Попов, Н.Г. Попова, В.Г. Рудычев, А.Л. Шкилев
Одной из актуальных задач в ортопедии является поиск и разработка новых материалов для замены кост-
ной ткани и хряща. Обработка полимерных композиционных материалов с биоактивной керамикой элек-
тронными пучками использовалась для изготовления искусственных материалов для ортопедических им-
плантатов. Обсуждаются экспериментальные достижения и проблемы радиационной технологии обработки
композитов на основе сверхвысокомолекулярного полиэтилена.
РОЗРОБКА КОМПОЗИЦІЙНИХ МАТЕРІАЛІВ ДЛЯ ОРТОПЕДИЧНИХ ІМПЛАНТАТІВ
О.М. Авілов, В.О. Дерюга, Г.Ф. Попов, Н.Г. Попова, В.Г. Рудичев, А.Л. Шкілев
___________________________________________________________
PROBLEMS OF ATOMIC SIENCE AND TECHNOLOGY. 2004. № 1.
Series: Nuclear Physics Investigations (42), p.181-183. 183
Однією з актуальних задач в ортопедії є пошук і розробка нових штучних матеріалів для заміщення
кісткової тканини і хряща. Обробка полімерних композиційних матеріалів з біоактивною керамікою
електронними пучками використовувалась для виготовлення штучних матеріалів ортопедичного
призначення. Приводяться експериментальні досягнення і проблеми радіаційної технології отримання
композитів на основі надвисокомолекулярного поліетилену.
184
1. introduction
Now there are no artificial materials that completely satisfy all demands of medicine. The mechanical properties of human osseous tissue are very different from those of inert metal alloys currently used in artificial joints. This large mismatch in mechanical properties causes bone resorption or loss around the implant, as well as loosening of the artificial joint stem in the medullar cavity. Ultra high-molecular weight polyethylene (UHMWPE) used as a substitute for gristle is also rigid, it is not of sufficient wear-resistance, it has little adhesion to bone cement, that causes both decreasing of a service life of the product and increasing of number of surgical operations.
2. EB PROCESSING OF UHMWPE
3. GRAFTING OF MMA ON UHMWPE
4. CONCLUSION
5. ACKNOWLEDGMENTS
The work was supported by the STCU, Kyiv, project #957. The authors wishes to express gratitude to Prof. N.Dedukh, Prof.V.Radchenko, and Dr. S.Malushkina, SJPI, for conducting of the full cycle testing of new composite materials on biocompatibility.
References
Разработка композиционных материалов для ортопедических имплантатов
О.М. Авилов, В.О. Дерюга, Г.Ф. Попов, Н.Г. Попова, В.Г. Рудычев, А.Л. Шкилев
Одной из актуальных задач в ортопедии является поиск и разработка новых материалов для замены костной ткани и хряща. Обработка полимерных композиционных материалов с биоактивной керамикой электронными пучками использовалась для изготовления искусственных материалов для ортопедических имплантатов. Обсуждаются экспериментальные достижения и проблемы радиационной технологии обработки композитов на основе сверхвысокомолекулярного полиэтилена.
Розробка композиційних матеріалів для ортопедичних імплантатів
О.М. Авілов, В.О. Дерюга, Г.Ф. Попов, Н.Г. Попова, В.Г. Рудичев, А.Л. Шкілев
Однією з актуальних задач в ортопедії є пошук і розробка нових штучних матеріалів для заміщення кісткової тканини і хряща. Обробка полімерних композиційних матеріалів з біоактивною керамікою електронними пучками використовувалась для виготовлення штучних матеріалів ортопедичного призначення. Приводяться експериментальні досягнення і проблеми радіаційної технології отримання композитів на основі надвисокомолекулярного поліетилену.
|