Installation for gas-phase deposition of materials

The installation for gas-phase deposition of materials is developed. Gas- dynamic parameters of a vapor-gas mixture flow in the reaction volume by flow-around of the surface being coated are evaluated. The processes of tungsten and boron carbide deposition are investigated.

Збережено в:
Бібліографічні деталі
Дата:2004
Автори: Lonin, Yu.F., Pilipets, Yu.O., Khovansky, N.A., Sheremet, V.I., Shirokov, B.M.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2004
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/79080
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Installation for gas-phase deposition of materials / Yu.F.Lonin, Yu.O.Pilipets, N.A.Khovansky, V.I.Sheremet, B.M.Shirokov // Вопросы атомной науки и техники. — 2004. — № 1. — С. 221-222. — Бібліогр.: 3 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-79080
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-790802025-02-23T18:13:32Z Installation for gas-phase deposition of materials Установка для осадження матеріалів із газової фази Установка для осаждения материалов из газовой фазы Lonin, Yu.F. Pilipets, Yu.O. Khovansky, N.A. Sheremet, V.I. Shirokov, B.M. Применение ускоренных пучков The installation for gas-phase deposition of materials is developed. Gas- dynamic parameters of a vapor-gas mixture flow in the reaction volume by flow-around of the surface being coated are evaluated. The processes of tungsten and boron carbide deposition are investigated. Розроблена установка для газофазного осадження матеріалів. Виконано оцінку газодинамічних параметрів потоку парагазової суміші в реакційному об’ємі при обтіканні покриваючої поверхні. Досліджені процеси осадження вольфраму та карбіду бора. Разработана установка для газофазного осаждения материалов. Выполнена оценка газодинамических па- раметров потока парогазовой смеси в реакционном объеме при обтекании покрываемой поверхности. Иссле- дованы процессы осаждения вольфрама и карбида бора. 2004 Article Installation for gas-phase deposition of materials / Yu.F.Lonin, Yu.O.Pilipets, N.A.Khovansky, V.I.Sheremet, B.M.Shirokov // Вопросы атомной науки и техники. — 2004. — № 1. — С. 221-222. — Бібліогр.: 3 назв. — англ. 1562-6016 PACS: 29.17.+w https://nasplib.isofts.kiev.ua/handle/123456789/79080 en Вопросы атомной науки и техники application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Применение ускоренных пучков
Применение ускоренных пучков
spellingShingle Применение ускоренных пучков
Применение ускоренных пучков
Lonin, Yu.F.
Pilipets, Yu.O.
Khovansky, N.A.
Sheremet, V.I.
Shirokov, B.M.
Installation for gas-phase deposition of materials
Вопросы атомной науки и техники
description The installation for gas-phase deposition of materials is developed. Gas- dynamic parameters of a vapor-gas mixture flow in the reaction volume by flow-around of the surface being coated are evaluated. The processes of tungsten and boron carbide deposition are investigated.
format Article
author Lonin, Yu.F.
Pilipets, Yu.O.
Khovansky, N.A.
Sheremet, V.I.
Shirokov, B.M.
author_facet Lonin, Yu.F.
Pilipets, Yu.O.
Khovansky, N.A.
Sheremet, V.I.
Shirokov, B.M.
author_sort Lonin, Yu.F.
title Installation for gas-phase deposition of materials
title_short Installation for gas-phase deposition of materials
title_full Installation for gas-phase deposition of materials
title_fullStr Installation for gas-phase deposition of materials
title_full_unstemmed Installation for gas-phase deposition of materials
title_sort installation for gas-phase deposition of materials
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2004
topic_facet Применение ускоренных пучков
url https://nasplib.isofts.kiev.ua/handle/123456789/79080
citation_txt Installation for gas-phase deposition of materials / Yu.F.Lonin, Yu.O.Pilipets, N.A.Khovansky, V.I.Sheremet, B.M.Shirokov // Вопросы атомной науки и техники. — 2004. — № 1. — С. 221-222. — Бібліогр.: 3 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT loninyuf installationforgasphasedepositionofmaterials
AT pilipetsyuo installationforgasphasedepositionofmaterials
AT khovanskyna installationforgasphasedepositionofmaterials
AT sheremetvi installationforgasphasedepositionofmaterials
AT shirokovbm installationforgasphasedepositionofmaterials
AT loninyuf ustanovkadlâosadžennâmateríalívízgazovoífazi
AT pilipetsyuo ustanovkadlâosadžennâmateríalívízgazovoífazi
AT khovanskyna ustanovkadlâosadžennâmateríalívízgazovoífazi
AT sheremetvi ustanovkadlâosadžennâmateríalívízgazovoífazi
AT shirokovbm ustanovkadlâosadžennâmateríalívízgazovoífazi
AT loninyuf ustanovkadlâosaždeniâmaterialovizgazovojfazy
AT pilipetsyuo ustanovkadlâosaždeniâmaterialovizgazovojfazy
AT khovanskyna ustanovkadlâosaždeniâmaterialovizgazovojfazy
AT sheremetvi ustanovkadlâosaždeniâmaterialovizgazovojfazy
AT shirokovbm ustanovkadlâosaždeniâmaterialovizgazovojfazy
first_indexed 2025-11-24T08:18:29Z
last_indexed 2025-11-24T08:18:29Z
_version_ 1849659028389494784
fulltext INSTALLATION FOR GAS-PHASE DEPOSITION OF MATERIALS Yu.F.Lonin, Yu.O.Pilipets, N.A.Khovansky, V.I.Sheremet, B.M.Shirokov National Science Center “Kharkov Institute of Physics and Technology” 1, Akademichskaya st., 61108, Kharkov, Ukraine E-mail: Shirokov@kipt.kharkov.ua The installation for gas-phase deposition of materials is developed. Gas- dynamic parameters of a vapor-gas mixture flow in the reaction volume by flow-around of the surface being coated are evaluated. The processes of tungsten and boron carbide deposition are investigated. PACS: 29.17.+w One of progressive directions in present-day Materi- als Science is assimilation and development of methods for gas-phase deposition of materials. These methods offer a means of obtaining high-purity materials, con- trolling the composition and structure of condensates during deposition, depositing uniform coatings onto pieces of a complicated configuration. The field of their application is extraordinary wide, from deposition of films with a thickness of few microns for radio electron- ics to production of parts for mechanical engineering. In the metallurgy of refractory metals most fre- quently one uses the method of hydrogen reduction of metal halides [1,2] as their reduction occurs at relatively low temperatures (0.2...0.5 Тmelt.) with rather high rates of deposition. The condensates deposited are character- ized by a high – close-to-theoretical – density and by a low content of impurities. In the course of deposition one can obtain metal alloys and different high-melting compounds in the form of borides, nitrides, carbides, silicides, oxides. It makes it possible to perform deposi- tion of protecting, separating, corrosion resistant, wear resistant coatings, as well as, to obtain pieces requiring minimal subsequent additional machining. Fig.1. Schematic diagram of the gas-phase deposition installation. 1 – reaction chamber, 2 – fore chambers; 3 – generator, 4 – substrate, 5 – inductor, 6 – nitrogen traps, 7 – fore pump, 8 – substrate rotation assembly; 9 – viewing window The present work was aimed to research on develop- ment of an installation for hydrogen reduction of halides. The schematic diagram of the installation is given in fig.1. The installation is made as an apparatus of a run- ning type where the reactor is located horizontally. Its principle of operation consists in the following: through the reaction chamber a flow of reagents is passed, the reagents enter into the chemical reaction on the surface of a heated substrate placed inside the reaction chamber. Solid-phase reaction products form a growing conden- sate layer at the substrate surface. And gaseous products are removed from the chamber and neutralized. The reaction chamber is a main unit of the installa- tion. By a constructive design it is made of a pipe from quartz glass or aluminum oxide having the external di- ameter of 150 mm and the length of 600 mm. The pipe is fastened in the horizontal position in fore chambers made from stainless steel. The tightness of joints is pro- vided by the set of seals from fluorine plastic and vacu- um rubber. In the pipe interior there is a coaxially in- stalled copper slit water-cooled chamber for protection of the ceramic pipe against overheating. The left fore chamber is closed by the charging flange into the center of which, through the vacuum seal, a stainless-steel stem of 12 mm in diameter passes. The end of the stem turned into the interior of the chamber is provided with a device for fixing the substrate. Inside the stem there is a through channel of 3 mm in diameter for placing there a microthermocouple the junction of which is fastened to the substrate and free ends are leaded out onto sliding contacts located on the external stem edge. At the same edge of the stem there is a sleeve for connection of the electric drive of the substrate rotation. The flange of the right fore chamber is provided with a viewing window for visual observation of the crystallization process. Heating of the substrate is performed by the induc- tion method using the rf generator HFG-1 125/0,44 via the 7-coil inductor of 10mm in diameter made from copper pipe winded around the chamber. The copper slit water-cooled chamber is designed so that it provides passage of the electromagnetic field into the interior of the reaction chamber for heating the substrate. At the same time, the radiation from the warmed substrate does not get through the slits into the ceramic pipe. Uniformi- ty of the temperature field is reached by placing the sub- strate in the central zone of the inductor. The substrate temperature is controlled by indications of thermal cou- ple, the signals of which are leaded out via the sliding contacts onto the recorder. The inductor, rf generator, copper slit chamber are cooled during operation with running water. The installation is equipped with a system for freez- ing the reaction products, as well as, halides that did not reacted. The system comprises three nitrogen traps be- ing series-parallel connected and detached from each other, from the reaction chamber and fore pump by ___________________________________________________________ PROBLEMS OF ATOMIC SIENCE AND TECHNOLOGY. 2004. № 1. Series: Nuclear Physics Investigations (42), p.221-222. 221 mailto:Shirokov@kipt.kharkov.ua means of a silphon valve with closing copper disks. To pump out the installation for vacuum the fore vacuum pump NVP-5D is used. In the pressure range of 10-1...10-2 torr in the reaction chamber on the vapor-gas mixture, a high-frequency charge is excited and the installation can be used as a plasmo-chemical one. According to calculations of gas-dynamic parame- ters of the vapor-gas flow running around the substrate, the geometry of the reaction chamber and the pumping system provide a viscous character of its flowing, lami- narity and absence of convection currents. Thus, at the pressure in the chamber of ~10 mm Hg and with the to- tal gas mixture consumption up to 90l/hour (under con- ditions close to optimum ones for deposition of tungsten and boron carbide), for the substrate with a diameter not more than 75 mm, the Knudsen number is ~10-3...10-4, i.e. the condition of the viscous flowing (Kn<1) is hith- erto satisfied. Then the Reynolds and Grassgof numbers are equal to about 1...3 and 10-2, respectively, i.e. there are satisfied also the conditions of a laminar flow (NRe< 1000) and of the absence of convection currents (10-2 GrN < NRe< 102 GrN ) [3]. Such a flow provides a uniformity of reagent delivering to the growing surface and almost equal rate of the layer growing in all points of the substrate, i.e. makes it possible to perform deposi- tion of coatings with a different thickness onto the sub- strates having a complicated configuration. The installation was used for investigations on tung- sten deposition by hydrogen reduction of three-chlorine boron in toluene vapors. Deposition was performed in the range of parameters when the deposition rate was limited by the delivering of initial reagents to the grow- ing surface. The experimental studies have shown that on substrates of a complicated configuration after depo- sition of a 200...300 µm coating, the thickness of the layer in different points of the substrate differs not more than by ± 5 µm. Fig.2 shows the morphology of growing of a tung- sten coating used as a working cathode surface in high- current pulse accelerators. Graphite cathodes with such coating withstand more than 5000 switchings at a volt- age of 1 MeV and a current of 50 kA. In fig.3 the microstructure of boron carbide is demonstrated. Analysis of investigations on boron car- bide deposition allowed us to optimize the process of deposition where a composition close to the stoichio- metric one (C=21.6%; B=78.4%) is realized. 1 2 Fig.2. Cathode for high-current pulse accelerators – 1 and morphology of growing of a tungsten coating on the cathode – 2, x5000 Fig.3. Microstructure of boron carbide, x300 Coatings of boron carbide are used as a semiconduc- tor material in thermoelectric converters, as well as in the form of a coating for protection of components in thermonuclear fusion machines. REFERENCES 1. A.I.Krasovsky et al. Fluoride process of tungsten production, M.: “Nauka”, 1986 (in Russian). 2. Yu.M.Korolyov, V.I.Stolyarov. Hydrogen reduc- tion of fluorides of refractory metals, M.: “Metal- lurgiya”, 1981 (in Russian). 3. B.M.Shirokov, N.A.Khovansky. Choice of optimum gas-dynamic parameters of a vapor-gas flow in the processes of gas-phase deposition of coatings // Vo- prosy Atomnoj Nauki i Tekhniki. 1998, (5)/5(6), N.4, p.98. УСТАНОВКА ДЛЯ ОСАЖДЕНИЯ МАТЕРИАЛОВ ИЗ ГАЗОВОЙ ФАЗЫ Ю.Ф.Лонин, Ю.О.Пилипец, Н.А.Хованский, В.И.Шеремет, Б.М.Широков Разработана установка для газофазного осаждения материалов. Выполнена оценка газодинамических па- раметров потока парогазовой смеси в реакционном объеме при обтекании покрываемой поверхности. Иссле- дованы процессы осаждения вольфрама и карбида бора. УСТАНОВКА ДЛЯ ОСАДЖЕННЯ МАТЕРІАЛІВ ІЗ ГАЗОВОЇ ФАЗИ Ю.Ф.Лонін, Ю.О.Пилипец, М.А.Хованський, В.І.Шеремет, Б.М.Широков Розроблена установка для газофазного осадження матеріалів. Виконано оцінку газодинамічних параметрів потоку парагазової суміші в реакційному об’ємі при обтіканні покриваючої поверхні. Досліджені процеси осадження вольфраму та карбіду бора. 222 222 INSTALLATION FOR GAS-PHASE DEPOSITION OF MATERIALS Yu.F.Lonin, Yu.O.Pilipets, N.A.Khovansky, V.I.Sheremet, B.M.Shirokov REFERENCES Установка для осаждения материалов из газовой фазы Ю.Ф.Лонин, Ю.О.Пилипец, Н.А.Хованский, В.И.Шеремет, Б.М.Широков Разработана установка для газофазного осаждения материалов. Выполнена оценка газодинамических параметров потока парогазовой смеси в реакционном объеме при обтекании покрываемой поверхности. Исследованы процессы осаждения вольфрама и карбида бора. Установка для осадження матеріалів із газової фази