Installation for gas-phase deposition of materials
The installation for gas-phase deposition of materials is developed. Gas- dynamic parameters of a vapor-gas mixture flow in the reaction volume by flow-around of the surface being coated are evaluated. The processes of tungsten and boron carbide deposition are investigated.
Saved in:
| Date: | 2004 |
|---|---|
| Main Authors: | , , , , |
| Format: | Article |
| Language: | English |
| Published: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2004
|
| Series: | Вопросы атомной науки и техники |
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/79080 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Installation for gas-phase deposition of materials / Yu.F.Lonin, Yu.O.Pilipets, N.A.Khovansky, V.I.Sheremet, B.M.Shirokov // Вопросы атомной науки и техники. — 2004. — № 1. — С. 221-222. — Бібліогр.: 3 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-79080 |
|---|---|
| record_format |
dspace |
| spelling |
nasplib_isofts_kiev_ua-123456789-790802025-02-23T18:13:32Z Installation for gas-phase deposition of materials Установка для осадження матеріалів із газової фази Установка для осаждения материалов из газовой фазы Lonin, Yu.F. Pilipets, Yu.O. Khovansky, N.A. Sheremet, V.I. Shirokov, B.M. Применение ускоренных пучков The installation for gas-phase deposition of materials is developed. Gas- dynamic parameters of a vapor-gas mixture flow in the reaction volume by flow-around of the surface being coated are evaluated. The processes of tungsten and boron carbide deposition are investigated. Розроблена установка для газофазного осадження матеріалів. Виконано оцінку газодинамічних параметрів потоку парагазової суміші в реакційному об’ємі при обтіканні покриваючої поверхні. Досліджені процеси осадження вольфраму та карбіду бора. Разработана установка для газофазного осаждения материалов. Выполнена оценка газодинамических па- раметров потока парогазовой смеси в реакционном объеме при обтекании покрываемой поверхности. Иссле- дованы процессы осаждения вольфрама и карбида бора. 2004 Article Installation for gas-phase deposition of materials / Yu.F.Lonin, Yu.O.Pilipets, N.A.Khovansky, V.I.Sheremet, B.M.Shirokov // Вопросы атомной науки и техники. — 2004. — № 1. — С. 221-222. — Бібліогр.: 3 назв. — англ. 1562-6016 PACS: 29.17.+w https://nasplib.isofts.kiev.ua/handle/123456789/79080 en Вопросы атомной науки и техники application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| language |
English |
| topic |
Применение ускоренных пучков Применение ускоренных пучков |
| spellingShingle |
Применение ускоренных пучков Применение ускоренных пучков Lonin, Yu.F. Pilipets, Yu.O. Khovansky, N.A. Sheremet, V.I. Shirokov, B.M. Installation for gas-phase deposition of materials Вопросы атомной науки и техники |
| description |
The installation for gas-phase deposition of materials is developed. Gas- dynamic parameters of a vapor-gas
mixture flow in the reaction volume by flow-around of the surface being coated are evaluated. The processes of
tungsten and boron carbide deposition are investigated. |
| format |
Article |
| author |
Lonin, Yu.F. Pilipets, Yu.O. Khovansky, N.A. Sheremet, V.I. Shirokov, B.M. |
| author_facet |
Lonin, Yu.F. Pilipets, Yu.O. Khovansky, N.A. Sheremet, V.I. Shirokov, B.M. |
| author_sort |
Lonin, Yu.F. |
| title |
Installation for gas-phase deposition of materials |
| title_short |
Installation for gas-phase deposition of materials |
| title_full |
Installation for gas-phase deposition of materials |
| title_fullStr |
Installation for gas-phase deposition of materials |
| title_full_unstemmed |
Installation for gas-phase deposition of materials |
| title_sort |
installation for gas-phase deposition of materials |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| publishDate |
2004 |
| topic_facet |
Применение ускоренных пучков |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/79080 |
| citation_txt |
Installation for gas-phase deposition of materials / Yu.F.Lonin, Yu.O.Pilipets, N.A.Khovansky, V.I.Sheremet, B.M.Shirokov // Вопросы атомной науки и техники. — 2004. — № 1. — С. 221-222. — Бібліогр.: 3 назв. — англ. |
| series |
Вопросы атомной науки и техники |
| work_keys_str_mv |
AT loninyuf installationforgasphasedepositionofmaterials AT pilipetsyuo installationforgasphasedepositionofmaterials AT khovanskyna installationforgasphasedepositionofmaterials AT sheremetvi installationforgasphasedepositionofmaterials AT shirokovbm installationforgasphasedepositionofmaterials AT loninyuf ustanovkadlâosadžennâmateríalívízgazovoífazi AT pilipetsyuo ustanovkadlâosadžennâmateríalívízgazovoífazi AT khovanskyna ustanovkadlâosadžennâmateríalívízgazovoífazi AT sheremetvi ustanovkadlâosadžennâmateríalívízgazovoífazi AT shirokovbm ustanovkadlâosadžennâmateríalívízgazovoífazi AT loninyuf ustanovkadlâosaždeniâmaterialovizgazovojfazy AT pilipetsyuo ustanovkadlâosaždeniâmaterialovizgazovojfazy AT khovanskyna ustanovkadlâosaždeniâmaterialovizgazovojfazy AT sheremetvi ustanovkadlâosaždeniâmaterialovizgazovojfazy AT shirokovbm ustanovkadlâosaždeniâmaterialovizgazovojfazy |
| first_indexed |
2025-11-24T08:18:29Z |
| last_indexed |
2025-11-24T08:18:29Z |
| _version_ |
1849659028389494784 |
| fulltext |
INSTALLATION FOR GAS-PHASE DEPOSITION OF MATERIALS
Yu.F.Lonin, Yu.O.Pilipets, N.A.Khovansky, V.I.Sheremet, B.M.Shirokov
National Science Center “Kharkov Institute of Physics and Technology”
1, Akademichskaya st., 61108, Kharkov, Ukraine
E-mail: Shirokov@kipt.kharkov.ua
The installation for gas-phase deposition of materials is developed. Gas- dynamic parameters of a vapor-gas
mixture flow in the reaction volume by flow-around of the surface being coated are evaluated. The processes of
tungsten and boron carbide deposition are investigated.
PACS: 29.17.+w
One of progressive directions in present-day Materi-
als Science is assimilation and development of methods
for gas-phase deposition of materials. These methods
offer a means of obtaining high-purity materials, con-
trolling the composition and structure of condensates
during deposition, depositing uniform coatings onto
pieces of a complicated configuration. The field of their
application is extraordinary wide, from deposition of
films with a thickness of few microns for radio electron-
ics to production of parts for mechanical engineering.
In the metallurgy of refractory metals most fre-
quently one uses the method of hydrogen reduction of
metal halides [1,2] as their reduction occurs at relatively
low temperatures (0.2...0.5 Тmelt.) with rather high rates
of deposition. The condensates deposited are character-
ized by a high – close-to-theoretical – density and by a
low content of impurities. In the course of deposition
one can obtain metal alloys and different high-melting
compounds in the form of borides, nitrides, carbides,
silicides, oxides. It makes it possible to perform deposi-
tion of protecting, separating, corrosion resistant, wear
resistant coatings, as well as, to obtain pieces requiring
minimal subsequent additional machining.
Fig.1. Schematic diagram of the gas-phase deposition
installation. 1 – reaction chamber, 2 – fore chambers;
3 – generator, 4 – substrate, 5 – inductor, 6 – nitrogen
traps, 7 – fore pump, 8 – substrate rotation assembly;
9 – viewing window
The present work was aimed to research on develop-
ment of an installation for hydrogen reduction of halides.
The schematic diagram of the installation is given in
fig.1. The installation is made as an apparatus of a run-
ning type where the reactor is located horizontally. Its
principle of operation consists in the following: through
the reaction chamber a flow of reagents is passed, the
reagents enter into the chemical reaction on the surface
of a heated substrate placed inside the reaction chamber.
Solid-phase reaction products form a growing conden-
sate layer at the substrate surface. And gaseous products
are removed from the chamber and neutralized.
The reaction chamber is a main unit of the installa-
tion. By a constructive design it is made of a pipe from
quartz glass or aluminum oxide having the external di-
ameter of 150 mm and the length of 600 mm. The pipe
is fastened in the horizontal position in fore chambers
made from stainless steel. The tightness of joints is pro-
vided by the set of seals from fluorine plastic and vacu-
um rubber. In the pipe interior there is a coaxially in-
stalled copper slit water-cooled chamber for protection
of the ceramic pipe against overheating. The left fore
chamber is closed by the charging flange into the center
of which, through the vacuum seal, a stainless-steel
stem of 12 mm in diameter passes. The end of the stem
turned into the interior of the chamber is provided with
a device for fixing the substrate. Inside the stem there is
a through channel of 3 mm in diameter for placing there
a microthermocouple the junction of which is fastened
to the substrate and free ends are leaded out onto sliding
contacts located on the external stem edge. At the same
edge of the stem there is a sleeve for connection of the
electric drive of the substrate rotation. The flange of the
right fore chamber is provided with a viewing window
for visual observation of the crystallization process.
Heating of the substrate is performed by the induc-
tion method using the rf generator HFG-1 125/0,44 via
the 7-coil inductor of 10mm in diameter made from
copper pipe winded around the chamber. The copper slit
water-cooled chamber is designed so that it provides
passage of the electromagnetic field into the interior of
the reaction chamber for heating the substrate. At the
same time, the radiation from the warmed substrate does
not get through the slits into the ceramic pipe. Uniformi-
ty of the temperature field is reached by placing the sub-
strate in the central zone of the inductor. The substrate
temperature is controlled by indications of thermal cou-
ple, the signals of which are leaded out via the sliding
contacts onto the recorder. The inductor, rf generator,
copper slit chamber are cooled during operation with
running water.
The installation is equipped with a system for freez-
ing the reaction products, as well as, halides that did not
reacted. The system comprises three nitrogen traps be-
ing series-parallel connected and detached from each
other, from the reaction chamber and fore pump by
___________________________________________________________
PROBLEMS OF ATOMIC SIENCE AND TECHNOLOGY. 2004. № 1.
Series: Nuclear Physics Investigations (42), p.221-222. 221
mailto:Shirokov@kipt.kharkov.ua
means of a silphon valve with closing copper disks. To
pump out the installation for vacuum the fore vacuum
pump NVP-5D is used.
In the pressure range of 10-1...10-2 torr in the reaction
chamber on the vapor-gas mixture, a high-frequency
charge is excited and the installation can be used as a
plasmo-chemical one.
According to calculations of gas-dynamic parame-
ters of the vapor-gas flow running around the substrate,
the geometry of the reaction chamber and the pumping
system provide a viscous character of its flowing, lami-
narity and absence of convection currents. Thus, at the
pressure in the chamber of ~10 mm Hg and with the to-
tal gas mixture consumption up to 90l/hour (under con-
ditions close to optimum ones for deposition of tungsten
and boron carbide), for the substrate with a diameter not
more than 75 mm, the Knudsen number is ~10-3...10-4,
i.e. the condition of the viscous flowing (Kn<1) is hith-
erto satisfied. Then the Reynolds and Grassgof numbers
are equal to about 1...3 and 10-2, respectively, i.e. there
are satisfied also the conditions of a laminar flow (NRe<
1000) and of the absence of convection currents (10-2
GrN < NRe< 102
GrN ) [3]. Such a flow provides a
uniformity of reagent delivering to the growing surface
and almost equal rate of the layer growing in all points
of the substrate, i.e. makes it possible to perform deposi-
tion of coatings with a different thickness onto the sub-
strates having a complicated configuration.
The installation was used for investigations on tung-
sten deposition by hydrogen reduction of three-chlorine
boron in toluene vapors. Deposition was performed in
the range of parameters when the deposition rate was
limited by the delivering of initial reagents to the grow-
ing surface. The experimental studies have shown that
on substrates of a complicated configuration after depo-
sition of a 200...300 µm coating, the thickness of the
layer in different points of the substrate differs not more
than by ± 5 µm.
Fig.2 shows the morphology of growing of a tung-
sten coating used as a working cathode surface in high-
current pulse accelerators. Graphite cathodes with such
coating withstand more than 5000 switchings at a volt-
age of 1 MeV and a current of 50 kA.
In fig.3 the microstructure of boron carbide is
demonstrated. Analysis of investigations on boron car-
bide deposition allowed us to optimize the process of
deposition where a composition close to the stoichio-
metric one (C=21.6%; B=78.4%) is realized.
1
2
Fig.2. Cathode for high-current pulse accelerators –
1 and morphology of growing of a tungsten coating
on the cathode – 2, x5000
Fig.3. Microstructure of boron carbide, x300
Coatings of boron carbide are used as a semiconduc-
tor material in thermoelectric converters, as well as in
the form of a coating for protection of components in
thermonuclear fusion machines.
REFERENCES
1. A.I.Krasovsky et al. Fluoride process of tungsten
production, M.: “Nauka”, 1986 (in Russian).
2. Yu.M.Korolyov, V.I.Stolyarov. Hydrogen reduc-
tion of fluorides of refractory metals, M.: “Metal-
lurgiya”, 1981 (in Russian).
3. B.M.Shirokov, N.A.Khovansky. Choice of optimum
gas-dynamic parameters of a vapor-gas flow in the
processes of gas-phase deposition of coatings // Vo-
prosy Atomnoj Nauki i Tekhniki. 1998, (5)/5(6), N.4,
p.98.
УСТАНОВКА ДЛЯ ОСАЖДЕНИЯ МАТЕРИАЛОВ ИЗ ГАЗОВОЙ ФАЗЫ
Ю.Ф.Лонин, Ю.О.Пилипец, Н.А.Хованский, В.И.Шеремет, Б.М.Широков
Разработана установка для газофазного осаждения материалов. Выполнена оценка газодинамических па-
раметров потока парогазовой смеси в реакционном объеме при обтекании покрываемой поверхности. Иссле-
дованы процессы осаждения вольфрама и карбида бора.
УСТАНОВКА ДЛЯ ОСАДЖЕННЯ МАТЕРІАЛІВ ІЗ ГАЗОВОЇ ФАЗИ
Ю.Ф.Лонін, Ю.О.Пилипец, М.А.Хованський, В.І.Шеремет, Б.М.Широков
Розроблена установка для газофазного осадження матеріалів. Виконано оцінку газодинамічних
параметрів потоку парагазової суміші в реакційному об’ємі при обтіканні покриваючої поверхні. Досліджені
процеси осадження вольфраму та карбіду бора.
222
222
INSTALLATION FOR GAS-PHASE DEPOSITION OF MATERIALS
Yu.F.Lonin, Yu.O.Pilipets, N.A.Khovansky, V.I.Sheremet, B.M.Shirokov
REFERENCES
Установка для осаждения материалов из газовой фазы
Ю.Ф.Лонин, Ю.О.Пилипец, Н.А.Хованский, В.И.Шеремет, Б.М.Широков
Разработана установка для газофазного осаждения материалов. Выполнена оценка газодинамических параметров потока парогазовой смеси в реакционном объеме при обтекании покрываемой поверхности. Исследованы процессы осаждения вольфрама и карбида бора.
Установка для осадження матеріалів із газової фази
|