Measurements of fluctuating plasma rotation velocity by means of correlation and doppler microwave reflectometry in Uragan-3M torsatron
Studies of fluctuating plasma rotation by means of correlation and Doppler microwave reflectometry in the Uragan- 3M torsatron were carried out. The application of two methods makes it possible to broaden the information about the rotation and structure of poloidal plasma oscillations. The correlati...
Saved in:
| Date: | 2005 |
|---|---|
| Main Authors: | , , , , , , , , |
| Format: | Article |
| Language: | English |
| Published: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2005
|
| Series: | Вопросы атомной науки и техники |
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/79148 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Measurements of fluctuating plasma rotation velocity by means of correlation and doppler microwave reflectometry in Uragan-3M torsatron / A.I. Skibenko, V.L. Berezhniy, O.S. Pavlichenko, V.L. Ocheretenko, I.B. Pinos, A.V. Prokopenko, I.K. Tarasov, S.A. Tsybenko, E.D. Volkov // Вопросы атомной науки и техники. — 2005. — № 1. — С. 200-202. — Бібліогр.: 9 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-79148 |
|---|---|
| record_format |
dspace |
| spelling |
nasplib_isofts_kiev_ua-123456789-791482025-02-23T20:02:58Z Measurements of fluctuating plasma rotation velocity by means of correlation and doppler microwave reflectometry in Uragan-3M torsatron Вимірювання швидкості обертання флуктуїруючої плазми за допомогою кореляційної та доплеровської нвч рефлектометрії в торсатроні Ураган-3М Измерение скорости вращения флуктуирующей плазмы с помощью корреляционной и доплеровской свч рефлектометрии в торсатроне Ураган-3М Skibenko, A.I. Berezhniy, V.L. Pavlichenko, O.S. Ocheretenko, V.L. Pinos, I.B. Prokopenko, A.V. Tarasov, I.K. Tsybenko, S.A. Volkov, E.D. Plasma diagnostics Studies of fluctuating plasma rotation by means of correlation and Doppler microwave reflectometry in the Uragan- 3M torsatron were carried out. The application of two methods makes it possible to broaden the information about the rotation and structure of poloidal plasma oscillations. The correlation method has an advantage in l=3 torsatron, because this one is practically insensitive to the tilt angle of incident mm - ray to the reflecting surface. The pulsation of the poloidal velocity and the position of plasma layer in the region of magnetic islands were observed, that became stable upon the formation of the ITB. Проведено вивчення обертання флуктуїруючої плазми методами кореляційної та Доплеровської НВЧ рефлектометрії на торсатроні Ураган-3М. Застосування двох методів дозволяє розширити інформацію про обертання плазми та полоїдальні плазмові флуктуації. Кореляційний метод має деякі переваги в l=3 торсатроні через його практичну нечутливість до кута падіння мм-потоку на відбиваючий шар. Спостерігались коливання полоїдальної швидкості і положення плазмового шару в області магнітних островів, які стабілізуються при створенні ВТБ. Проведено изучение вращения флуктуирующей плазмы методами корреляционной и Доплеровской СВЧ рефлектометрии на торсатроне Ураган-3М. Применение двух методов позволяет расширить информацию о вращении плазмы и полоидальных плазменных флуктуаций. Корреляционный метод имеет некоторые преимущества в l=3 торсатроне ввиду практической нечувствительности к углу падения мм-потока на отражающий слой. Наблюдались пульсации полоидальной скорости и положения плазменного слоя в области магнитных островов, которые стабилизировались при образовании ВТБ. 2005 Article Measurements of fluctuating plasma rotation velocity by means of correlation and doppler microwave reflectometry in Uragan-3M torsatron / A.I. Skibenko, V.L. Berezhniy, O.S. Pavlichenko, V.L. Ocheretenko, I.B. Pinos, A.V. Prokopenko, I.K. Tarasov, S.A. Tsybenko, E.D. Volkov // Вопросы атомной науки и техники. — 2005. — № 1. — С. 200-202. — Бібліогр.: 9 назв. — англ. 1562-6016 PACS: 52.55.Hc https://nasplib.isofts.kiev.ua/handle/123456789/79148 en Вопросы атомной науки и техники application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| language |
English |
| topic |
Plasma diagnostics Plasma diagnostics |
| spellingShingle |
Plasma diagnostics Plasma diagnostics Skibenko, A.I. Berezhniy, V.L. Pavlichenko, O.S. Ocheretenko, V.L. Pinos, I.B. Prokopenko, A.V. Tarasov, I.K. Tsybenko, S.A. Volkov, E.D. Measurements of fluctuating plasma rotation velocity by means of correlation and doppler microwave reflectometry in Uragan-3M torsatron Вопросы атомной науки и техники |
| description |
Studies of fluctuating plasma rotation by means of correlation and Doppler microwave reflectometry in the Uragan- 3M torsatron were carried out. The application of two methods makes it possible to broaden the information about the rotation and structure of poloidal plasma oscillations. The correlation method has an advantage in l=3 torsatron, because this one is practically insensitive to the tilt angle of incident mm - ray to the reflecting surface. The pulsation of the poloidal velocity and the position of plasma layer in the region of magnetic islands were observed, that became stable upon the formation of the ITB. |
| format |
Article |
| author |
Skibenko, A.I. Berezhniy, V.L. Pavlichenko, O.S. Ocheretenko, V.L. Pinos, I.B. Prokopenko, A.V. Tarasov, I.K. Tsybenko, S.A. Volkov, E.D. |
| author_facet |
Skibenko, A.I. Berezhniy, V.L. Pavlichenko, O.S. Ocheretenko, V.L. Pinos, I.B. Prokopenko, A.V. Tarasov, I.K. Tsybenko, S.A. Volkov, E.D. |
| author_sort |
Skibenko, A.I. |
| title |
Measurements of fluctuating plasma rotation velocity by means of correlation and doppler microwave reflectometry in Uragan-3M torsatron |
| title_short |
Measurements of fluctuating plasma rotation velocity by means of correlation and doppler microwave reflectometry in Uragan-3M torsatron |
| title_full |
Measurements of fluctuating plasma rotation velocity by means of correlation and doppler microwave reflectometry in Uragan-3M torsatron |
| title_fullStr |
Measurements of fluctuating plasma rotation velocity by means of correlation and doppler microwave reflectometry in Uragan-3M torsatron |
| title_full_unstemmed |
Measurements of fluctuating plasma rotation velocity by means of correlation and doppler microwave reflectometry in Uragan-3M torsatron |
| title_sort |
measurements of fluctuating plasma rotation velocity by means of correlation and doppler microwave reflectometry in uragan-3m torsatron |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| publishDate |
2005 |
| topic_facet |
Plasma diagnostics |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/79148 |
| citation_txt |
Measurements of fluctuating plasma rotation velocity by means of correlation and doppler microwave reflectometry in Uragan-3M torsatron / A.I. Skibenko, V.L. Berezhniy, O.S. Pavlichenko, V.L. Ocheretenko, I.B. Pinos, A.V. Prokopenko, I.K. Tarasov, S.A. Tsybenko, E.D. Volkov // Вопросы атомной науки и техники. — 2005. — № 1. — С. 200-202. — Бібліогр.: 9 назв. — англ. |
| series |
Вопросы атомной науки и техники |
| work_keys_str_mv |
AT skibenkoai measurementsoffluctuatingplasmarotationvelocitybymeansofcorrelationanddopplermicrowavereflectometryinuragan3mtorsatron AT berezhniyvl measurementsoffluctuatingplasmarotationvelocitybymeansofcorrelationanddopplermicrowavereflectometryinuragan3mtorsatron AT pavlichenkoos measurementsoffluctuatingplasmarotationvelocitybymeansofcorrelationanddopplermicrowavereflectometryinuragan3mtorsatron AT ocheretenkovl measurementsoffluctuatingplasmarotationvelocitybymeansofcorrelationanddopplermicrowavereflectometryinuragan3mtorsatron AT pinosib measurementsoffluctuatingplasmarotationvelocitybymeansofcorrelationanddopplermicrowavereflectometryinuragan3mtorsatron AT prokopenkoav measurementsoffluctuatingplasmarotationvelocitybymeansofcorrelationanddopplermicrowavereflectometryinuragan3mtorsatron AT tarasovik measurementsoffluctuatingplasmarotationvelocitybymeansofcorrelationanddopplermicrowavereflectometryinuragan3mtorsatron AT tsybenkosa measurementsoffluctuatingplasmarotationvelocitybymeansofcorrelationanddopplermicrowavereflectometryinuragan3mtorsatron AT volkoved measurementsoffluctuatingplasmarotationvelocitybymeansofcorrelationanddopplermicrowavereflectometryinuragan3mtorsatron AT skibenkoai vimírûvannâšvidkostíobertannâfluktuíruûčoíplazmizadopomogoûkorelâcíjnoítadoplerovsʹkoínvčreflektometríívtorsatroníuragan3m AT berezhniyvl vimírûvannâšvidkostíobertannâfluktuíruûčoíplazmizadopomogoûkorelâcíjnoítadoplerovsʹkoínvčreflektometríívtorsatroníuragan3m AT pavlichenkoos vimírûvannâšvidkostíobertannâfluktuíruûčoíplazmizadopomogoûkorelâcíjnoítadoplerovsʹkoínvčreflektometríívtorsatroníuragan3m AT ocheretenkovl vimírûvannâšvidkostíobertannâfluktuíruûčoíplazmizadopomogoûkorelâcíjnoítadoplerovsʹkoínvčreflektometríívtorsatroníuragan3m AT pinosib vimírûvannâšvidkostíobertannâfluktuíruûčoíplazmizadopomogoûkorelâcíjnoítadoplerovsʹkoínvčreflektometríívtorsatroníuragan3m AT prokopenkoav vimírûvannâšvidkostíobertannâfluktuíruûčoíplazmizadopomogoûkorelâcíjnoítadoplerovsʹkoínvčreflektometríívtorsatroníuragan3m AT tarasovik vimírûvannâšvidkostíobertannâfluktuíruûčoíplazmizadopomogoûkorelâcíjnoítadoplerovsʹkoínvčreflektometríívtorsatroníuragan3m AT tsybenkosa vimírûvannâšvidkostíobertannâfluktuíruûčoíplazmizadopomogoûkorelâcíjnoítadoplerovsʹkoínvčreflektometríívtorsatroníuragan3m AT volkoved vimírûvannâšvidkostíobertannâfluktuíruûčoíplazmizadopomogoûkorelâcíjnoítadoplerovsʹkoínvčreflektometríívtorsatroníuragan3m AT skibenkoai izmerenieskorostivraŝeniâfluktuiruûŝejplazmyspomoŝʹûkorrelâcionnojidoplerovskojsvčreflektometriivtorsatroneuragan3m AT berezhniyvl izmerenieskorostivraŝeniâfluktuiruûŝejplazmyspomoŝʹûkorrelâcionnojidoplerovskojsvčreflektometriivtorsatroneuragan3m AT pavlichenkoos izmerenieskorostivraŝeniâfluktuiruûŝejplazmyspomoŝʹûkorrelâcionnojidoplerovskojsvčreflektometriivtorsatroneuragan3m AT ocheretenkovl izmerenieskorostivraŝeniâfluktuiruûŝejplazmyspomoŝʹûkorrelâcionnojidoplerovskojsvčreflektometriivtorsatroneuragan3m AT pinosib izmerenieskorostivraŝeniâfluktuiruûŝejplazmyspomoŝʹûkorrelâcionnojidoplerovskojsvčreflektometriivtorsatroneuragan3m AT prokopenkoav izmerenieskorostivraŝeniâfluktuiruûŝejplazmyspomoŝʹûkorrelâcionnojidoplerovskojsvčreflektometriivtorsatroneuragan3m AT tarasovik izmerenieskorostivraŝeniâfluktuiruûŝejplazmyspomoŝʹûkorrelâcionnojidoplerovskojsvčreflektometriivtorsatroneuragan3m AT tsybenkosa izmerenieskorostivraŝeniâfluktuiruûŝejplazmyspomoŝʹûkorrelâcionnojidoplerovskojsvčreflektometriivtorsatroneuragan3m AT volkoved izmerenieskorostivraŝeniâfluktuiruûŝejplazmyspomoŝʹûkorrelâcionnojidoplerovskojsvčreflektometriivtorsatroneuragan3m |
| first_indexed |
2025-11-24T21:07:17Z |
| last_indexed |
2025-11-24T21:07:17Z |
| _version_ |
1849707397089591296 |
| fulltext |
+1-order
MEASUREMENTS OF FLUCTUATING PLASMA ROTATION VELOCITY
BY MEANS OF CORRELATION AND DOPPLER MICROWAVE
REFLECTOMETRY IN URAGAN-3M TORSATRON
A.I. Skibenko, V.L. Berezhniy, O.S. Pavlichenko, V.L. Ocheretenko, I.B. Pinos,
A.V. Prokopenko, I.K. Tarasov, S.A. Tsybenko, E.D. Volkov
Institute of Plasma Physics of National Science Centre “Kharkov Institute of Physics and
Technology”, 61108 Kharkov, Ukraine
Studies of fluctuating plasma rotation by means of correlation and Doppler microwave reflectometry in the Uragan-
3M torsatron were carried out. The application of two methods makes it possible to broaden the information about the
rotation and structure of poloidal plasma oscillations. The correlation method has an advantage in l=3 torsatron, because
this one is practically insensitive to the tilt angle of incident mm - ray to the reflecting surface. The pulsation of the
poloidal velocity and the position of plasma layer in the region of magnetic islands were observed, that became stable
upon the formation of the ITB.
PACS: 52.55.Hc
The measurements of plasma rotation in E×H fields in
tokamaks and stellarators are essential in studying the
formation of the transport barriers which determine the
energy and plasma particles transport [1]. Recently, the
transitions to the enhanced mode of the particle and
plasma energy confinement, with the formation of the
internal transport barrier (ITB), were reported on
Uragan-3M (U-3M) torsatron [2]. When studying this
phenomenon, the phase, spectral, and correlation
measurements of the reflected microwaves were used to
determine the plasma profile and characteristics of its
fluctuations.
The correlation microwave reflectometry has been
used to determine the velocity of plasma rotation in U-3M
previously [3]. The method is based on measurement of
the time shift/period of cross-correlation function (CCF)
of two microwave signals reflected from the layer areas of
equal density that are shifted either in toroidal or poloidal
direction. The method is practically insensitive to the tilt
angle between the mm-ray and the reflecting surface. This
is particularly important for the case of probing with X-
wave for which the orientation of the reflection surface is
defined by density as well as by magnetic field. The
direction of rotation is determined by the relation of the
obtained CCF shift when CCF12 is changed to CCF21: the
bigger shift corresponds to the longer distance between
the reflecting areas and vice versa.
However the torsatron has a poloidal asymmetry due
to the configuration of the magnetic surfaces. The
asymmetry shows itself as a poloidal modification of the
magnetic field, the radius and the curvature of the
reflecting layer. This is the reason why the measured
shift, or the CCF period, allows determining the velocity
of rotation averaged over the poloidal or toroidal angle.
The UHF Doppler reflectometry (DR) is based on the
change in frequency shift of the reflected wave that falls
on the tilted moving plasma layer [4-6]. The reflecting
layer of fluctuating plasma acts as a reflection grating.
The probing antenna that is tilted to the reflecting layer,
according to the Bragg’s rule, can receive the reflected
signal with the diffraction of -1 order on the shifted
frequency preferentially, but the zeroth order is
suppressed (Fig.1).
For the diffraction maximum of -1-st order the wave
number of the plasma perturbations is given by:
k fl=−2k i sinϕ≃−2k i r c , (1)
where ki is the wave number of the probing wave, ϕ is the
angle of incidence.
The Doppler shift of the reflected wave frequency is:
Δf D=− 2f
c
μr c ⋅υθ r c , (2)
where µ and υθ are the refraction coefficient and the
velocity of rotation in the reflection layer. Thus, one can
obtain the local value of the rotation velocity by
measurement of the Doppler frequency shift.
If density and magnetic field profiles are known than
the radius of the beam turning-point rc and µ(rс) are
determined by:
μ
O , X 2r c=
a2
r c
2 sin2ϕ , μOW
2 =1 −
n r c
nc
,
μXW
2 =1 −
1 −
n r c
nc 1 −
n r c
nc
1 −
n rc
nc
−
f c
2 r c
f 2
. (3)
In the experiment, two methods of determination of
the frequency shift of the reflected wave were used: by
means of UHF-analyser of the reflected wave and by
spectral analysis of the reflected wave fluctuation using
fast Fourier transform. The UHF-analyser made it
possible to measure shifts of the probing frequencies
200 Problems of Atomic Science and Technology. 2005. № 1. Series: Plasma Physics (10). P. 200-202
-1-order
0-order
Fig.1. Diffraction of mm-wave in plasma
layer perturbation
f = 10-40 GHz; conveniently, it directly determines the
sign of the shift (the direction of the velocity). However,
the device is designed for analysis of plasma with
parameters that change slowly, while the scanning time, ∆
t ≥ 2 ms. Besides this device has restrictions in the
resolution of the frequency shift.
The method of spectral analysis has no frequency
restrictions. The direction of the frequency shift is
determined from Fourier transform of the complex signal
U(t)=U1(t)+iU2(t), where U1 and U2 are signals of the
same reflected wave, acquired with the phase shift of π/2.
The appearance of a maximum of the power spectral
density (PSD) on positive or negative semi-axis
corresponds to the direction of the frequency shift. The
method was verified on a mechanical model with the
rotating corrugated cylinder [3]. The change of the
direction of rotation revealed in the change of the position
of the PSD maximum (Fig. 2). In the plasma experiment
the signal of the microwave detector was digitized with
ADC (τ=1.3 mks) and stored.
-1 -0.5 0 0.5 1
0
0.2
0.4
0.6
0.8
1 A, r.u.
Frequency, kHz
a
-1 -0.5 0 0.5 1
0
0.2
0.4
0.6
0.8
1 A, r.u.
Frequency, kHz
b
Fig.2. Spectra of complex signals on different direction of
rotation
Fig.3
The measurement on U-3M has been fulfilled
simultaneously by means the Doppler and the correlation
methods at the same torsatron crossection (Fig. 3a).
Plasma probing was performed in 3 locations for different
direction – X-wave probing (f=18-26 GHz) - both inside
and outside and vertical – O-wave probing (f=10 GHz).
The receiving-transmitting antenna that were used in the
correlation method were put away off each other and were
tilted to bounder of plasma so the Doppler frequency shift
could be measured by each of them.
The scheme of the measurement of the frequency shift
using the analyser and the spectral analysis is given in
Fig. 3b. The comparison of the frequency shifts
determined using the two methods is given in Fig. 4. The
Doppler frequency shift of the reflected wave measured
using the two methods gave satisfactory close values.
Fig.4. Doppler frequency shift determined by Fourier
transform (a) and UHF-analyzer (b)
Fig.5. Temporal behaviour of integral density and
reflection layer radius (a), Doppler frequency shift (b),
velocity of rotation (• - correlation, - Doppler
reflectometry) (c), poloidal wave number (d)
At determination the velocity of rotation, µ(rc) was
calculated from equation 3. However, due to variable
curvature of magnetic surfaces of the l=3 torsatron during
the determining of the angle ϕ and hence µ(rc), significant
errors may be present in determining the velocity of
rotation. In this case, simultaneous use of the Doppler
reflectometry at “U-3M” and the correlation method is
expedient for the accurate determination of the direction
of rotation. The comparison of the time variation of the
Doppler frequency shift and the velocity obtained by
using the correlation analysis is presented in Fig. 5 b, c.
Obviously, there is an almost synchronous change of the
sign of the velocity and the Doppler frequency shift.
Measurements of the Doppler frequency shift allow
determining the poloidal wave number and a poloidal
velocity by using equations 1, 2, 3. The presented results
show the change in the direction of rotation (Fig. 5 c) and
increase of kP (Fig. 5 d) to be the precursors of the
formation of the ITB, i.e. the wave length of the
oscillations decreases. An increase of kr with a maximum
in the range of the magnetic islands chain has been shown
on “Uragan-3M” previously [7].
The finite width of probing beam, the finite curvature
of wave front and of reflecting layer led to k-space
broadening [6]
Δk p=
2 2
w 1w2 k 0
ρ
2
. (4)
In these measurements ∆kp≈1 cm-1 for ki≈2 cm-1, w=2 cm.
In Fig. 6 poloidal velocity is plotted as function of ∆
fD. A quasi co-linearity between vp and ∆fD is observed
and confirms that the frequency shift is actually due to
Doppler effect.
Fig.6
201
In the time period before the establishing of the ITB
mode, the oscillation of the poloidal velocity and Doppler
frequency shift has been recorded (see Fig. 5) as well as
phase pulsation of the reflected UHF signal (at λ = 3 cm,
∆φ< π, ∆r ≈ 1 cm) with the frequency of ∼400 Hz. The
pulsation damps after the ITB has been formed (Fig. 7).
Fig.7
Fig.8
This phenomenon is observed during the reflection of
the O- and X- waves provided the reflecting layer is
situated in the region of the stochastic magnetic lines that
form the “oscillating islands”. The effect of the poloidal
rotation of a chain of magnetic island was modelled in
work [8]. A similar phenomenon was observed on LHD
[9].
Two regions of large rotation shear have been
observed: one located at the edge ρ ≈ 0.95; the second one
located in inner region (Fig. 8).
CONCLUSIONS
Simultaneous application of the correlation and the
Doppler reflectometry for study of rotation of fluctuating
plasma makes it possible to broaden the information
about the structure of the poloidal plasma oscillations.
The correlation method has an advantage in l=3 torsatron
because one is practically insensitive to the tilt angle
between the incident mm-ray and reflecting surface. The
poloidal wave number as well as the radial wave number
increases upon the ITB formation. The pulsations of the
poloidal velocity and the position of plasma layer in the
region of magnetic islands were observed that became
stable upon the formation of the ITB.
REFERENCES
1. K. Burrel // Phys. Plasmas (4). 1997, № 5, p. 1499.
2. A.I. Skibenko, O.S. Pavlichenko, E.D. Volkov et al.
ITB formation dynamics in the Uragan-3M torsatron
inferred from microwaves reflectometry // Problems
of Atomic Science and Technology. Series "Plasma
Physics" (7). 2002, № 4, p. 62-64.
3. O.S. Pavlichenko, A.I. Skibenko, I.P. Fomin et al.
Poloidal rotation velocity measurement in toroidal
plasmas via microwave reflectometry // Proceeding
of 5th International Workshop on Reflectometry,
March 5-7, 2001, Toki, Japan./ NIFS-PROC-49,
2001, p.85.
4. X.L. Zou, T.S. Seek, M. Paume et al. // 26th Conf. On
Contr. Fusion and Plasma Physics, Contr. Papers,
Maastrict, 1999, v. 23J, p. 1041.
5. V.V. Bulanin, S.V. Lebedev et al. // Plasma Physics.
(26). 2000, №. 10, p. 867-873.
6. M. Hirsch, E. Holzhauer, J. Baldzuhn et al. // Plasma
Physics Fusion (43). 2001, p. 1641-1660.
7. E.D. Volkov, V.L. Berezhniy, V.N. Bondarenko et al.
Formation of the ITB in the vicinity of rational
surfaces in the Uragan-3M torsatron // Problems of
Atomic Science and Technology, Series "Plasma
Physics" (9). 2003, № 1, p. 3-6.
8. S. Hacquin, S. Heuraux, F. Silva et al. // 30-th EPS
Conference on Plasma Physics and Contr. Fusion, S-
Petersburg, 7-11 July 2003 /ECA, 2003, v.27A,
p.177.
9. T. Tokuzawa, K. Kawahata. Observation of the
rotating Islands Like Structure by Pulsed Radar
Reflectometry measurement // Annual Report of
National Institute for Fusion Science, April 2002-
March 2003, p.29.
ИЗМЕРЕНИЕ СКОРОСТИ ВРАЩЕНИЯ ФЛУКТУИРУЮЩЕЙ ПЛАЗМЫ
С ПОМОЩЬЮ КОРРЕЛЯЦИОННОЙ И ДОПЛЕРОВСКОЙ СВЧ РЕФЛЕКТОМЕТРИИ
В ТОРСАТРОНЕ УРАГАН-3М
А.И. Скибенко, В.Л. Бережный, О.С. Павличенко, В.Л. Очеретенко, И.Б. Пинос, А.В. Прокопенко,
И.К. Тарасов, С.А. Цыбенко, Е.Д. Волков
Проведено изучение вращения флуктуирующей плазмы методами корреляционной и Доплеровской СВЧ
рефлектометрии на торсатроне Ураган-3М. Применение двух методов позволяет расширить информацию о
вращении плазмы и полоидальных плазменных флуктуаций. Корреляционный метод имеет некоторые
преимущества в l=3 торсатроне ввиду практической нечувствительности к углу падения мм-потока на
отражающий слой. Наблюдались пульсации полоидальной скорости и положения плазменного слоя в области
магнитных островов, которые стабилизировались при образовании ВТБ.
ВИМІРЮВАННЯ ШВИДКОСТІ ОБЕРТАННЯ ФЛУКТУЇРУЮЧОЇ ПЛАЗМИ
ЗА ДОПОМОГОЮ КОРЕЛЯЦІЙНОЇ ТА ДОПЛЕРОВСЬКОЇ НВЧ РЕФЛЕКТОМЕТРІЇ
В ТОРСАТРОНІ УРАГАН-3М
А.І. Скибенко, В.Л. Бережний, О.С. Павличенко, В.Л. Очеретенко, І.Б. Пінос, А.В. Прокопенко,
І.К. Тарасов, С.А. Цибенко, Є.Д. Волков
202
Проведено вивчення обертання флуктуїруючої плазми методами кореляційної та Доплеровської НВЧ
рефлектометрії на торсатроні Ураган-3М. Застосування двох методів дозволяє розширити інформацію про
обертання плазми та полоїдальні плазмові флуктуації. Кореляційний метод має деякі переваги в l=3 торсатроні
через його практичну нечутливість до кута падіння мм-потоку на відбиваючий шар. Спостерігались коливання
полоїдальної швидкості і положення плазмового шару в області магнітних островів, які стабілізуються при
створенні ВТБ.
203
|