Influence of polarization of a regular electromagnetic wave on stochastic acceleration of charged particles in an external magnetic field

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Вопросы атомной науки и техники
Datum:2001
Hauptverfasser: Buts, V.A., Manuilenko, O.V., Tolstoluzhsky, A.P., Turkin, Yu.A.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2001
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/79212
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Influence of polarization of a regular electromagnetic wave on stochastic acceleration of charged particles in an external magnetic field / V.A. Buts, O.V. Manuilenko, A.P. Tolstoluzhsky, Yu.A. Turkin // Вопросы атомной науки и техники. — 2001. — № 3. — С. 86-88. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-79212
record_format dspace
spelling Buts, V.A.
Manuilenko, O.V.
Tolstoluzhsky, A.P.
Turkin, Yu.A.
2015-03-29T18:39:09Z
2015-03-29T18:39:09Z
2001
Influence of polarization of a regular electromagnetic wave on stochastic acceleration of charged particles in an external magnetic field / V.A. Buts, O.V. Manuilenko, A.P. Tolstoluzhsky, Yu.A. Turkin // Вопросы атомной науки и техники. — 2001. — № 3. — С. 86-88. — англ.
1562-6016
PACS nambers: 52.35.Mw
https://nasplib.isofts.kiev.ua/handle/123456789/79212
This work was supported partially by STCU grant # 253.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Influence of polarization of a regular electromagnetic wave on stochastic acceleration of charged particles in an external magnetic field
Влияние поляризации регулярной электромагнитной волны на стохастическое ускорение заряженных частиц во внешнем магнитном поле
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Influence of polarization of a regular electromagnetic wave on stochastic acceleration of charged particles in an external magnetic field
spellingShingle Influence of polarization of a regular electromagnetic wave on stochastic acceleration of charged particles in an external magnetic field
Buts, V.A.
Manuilenko, O.V.
Tolstoluzhsky, A.P.
Turkin, Yu.A.
title_short Influence of polarization of a regular electromagnetic wave on stochastic acceleration of charged particles in an external magnetic field
title_full Influence of polarization of a regular electromagnetic wave on stochastic acceleration of charged particles in an external magnetic field
title_fullStr Influence of polarization of a regular electromagnetic wave on stochastic acceleration of charged particles in an external magnetic field
title_full_unstemmed Influence of polarization of a regular electromagnetic wave on stochastic acceleration of charged particles in an external magnetic field
title_sort influence of polarization of a regular electromagnetic wave on stochastic acceleration of charged particles in an external magnetic field
author Buts, V.A.
Manuilenko, O.V.
Tolstoluzhsky, A.P.
Turkin, Yu.A.
author_facet Buts, V.A.
Manuilenko, O.V.
Tolstoluzhsky, A.P.
Turkin, Yu.A.
publishDate 2001
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Влияние поляризации регулярной электромагнитной волны на стохастическое ускорение заряженных частиц во внешнем магнитном поле
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/79212
citation_txt Influence of polarization of a regular electromagnetic wave on stochastic acceleration of charged particles in an external magnetic field / V.A. Buts, O.V. Manuilenko, A.P. Tolstoluzhsky, Yu.A. Turkin // Вопросы атомной науки и техники. — 2001. — № 3. — С. 86-88. — англ.
work_keys_str_mv AT butsva influenceofpolarizationofaregularelectromagneticwaveonstochasticaccelerationofchargedparticlesinanexternalmagneticfield
AT manuilenkoov influenceofpolarizationofaregularelectromagneticwaveonstochasticaccelerationofchargedparticlesinanexternalmagneticfield
AT tolstoluzhskyap influenceofpolarizationofaregularelectromagneticwaveonstochasticaccelerationofchargedparticlesinanexternalmagneticfield
AT turkinyua influenceofpolarizationofaregularelectromagneticwaveonstochasticaccelerationofchargedparticlesinanexternalmagneticfield
AT butsva vliâniepolârizaciiregulârnoiélektromagnitnoivolnynastohastičeskoeuskoreniezarâžennyhčasticvovnešnemmagnitnompole
AT manuilenkoov vliâniepolârizaciiregulârnoiélektromagnitnoivolnynastohastičeskoeuskoreniezarâžennyhčasticvovnešnemmagnitnompole
AT tolstoluzhskyap vliâniepolârizaciiregulârnoiélektromagnitnoivolnynastohastičeskoeuskoreniezarâžennyhčasticvovnešnemmagnitnompole
AT turkinyua vliâniepolârizaciiregulârnoiélektromagnitnoivolnynastohastičeskoeuskoreniezarâžennyhčasticvovnešnemmagnitnompole
first_indexed 2025-11-27T02:56:54Z
last_indexed 2025-11-27T02:56:54Z
_version_ 1850793043045646336
fulltext INFLUENCE OF POLARIZATION OF A REGULAR ELECTROMAGNETIC WAVE ON STOCHASTIC ACCELERATION OF CHARGED PARTICLES IN AN EXTERNAL MAGNETIC FIELD V.A. Buts, O.V. Manuilenko, A.P. Tolstoluzhsky, Yu.A. Turkin NSC KIPT, 1 Akademicheskaya Str., Kharkov, 61108 Ukraine e-mail: tolstoluzh@kipt.kharkov.ua PACS numbers: 52.35.Mw 1 INTRODUCTION One of the ways of realization of the "channel" of direct field energy transmission to particles is creation of conditions, at which the motion of particles in a field of regular waves becomes chaotic. In the present report the chaotic dynamics of charged particles in the field of regular electromagnetic wave propagating at the angle to the constant external magnetic field is considered. The stochastic instability develops as a result of over- lapping of nonlinear cyclotron resonances. We have found conditions at which the particle, which is got into regime of stochastic acceleration, remains in it without reference to energy, which the particle is gained during the interaction with wave. It is shown that these condi- tions essentially depend on wave polarization. So if in wave with circular or H-polarization the "unlimited" stochastic acceleration is possible, in wave with E-po- larization the "unlimited" stochastic acceleration is im- possible. 2 STATEMENT OF A PROBLEM. THE BA- SIC EQUATIONS We consider the motion of a charged particle in con- stant externally applied magnetic field  H Ho= { , , }0 0 and in the field of an electromagnetic plane wave, prop- agating at the angle φ to the field  H :       E E ikr i t H c k E ikr i t o o = − = − Re{ exp( )}, Re{ [ ] exp( )} α ω ω α ω (1) Here Eo - wave amplitude,  α α α α= { , , }x y zi - polarization vector of the wave, wave vector { }  k c N c N= ⋅ ⋅ω φ ω φ/ sin , , / cos0 has only two variebles choice of coordinates. N - is the index of re- fraction. In dimensionless variables ( t t→ ω ,  r r c→ ω / ,  p p mc→ / ,   k kc→ / ω ) the equa- tions of particle motion can be reduced to the form:        ( / ) Re( ) ( / )[ ] / Re{( ) } p kp Ee ph k pE e i h i = − + + + 1 γ ω γ γ ψ ψ , (2)    /r p= γ ,  /ψ γ= − kp 1 , where ψ = − kr t ,   h H H eH mco h o= =/ , /ω ω ,   E eE mco= α ω/ , γ = +( ) /1 2 1 2p - particle energy, p - its momentum. The set of Eqs. (2) possesses the in- tegral of motion:      p iEe r h k consti h− + − =Re( ) [ , ]ψ ω γ . (3) For subsequent analysis, it is convenient in (2), (3) to transform to new variables p pz⊥ , , , ,θ ξ η - guiding center coordinates, by formulas: p p p p p p x p y p x y z z h h = = = = − = + ⊥ ⊥ ⊥ ⊥ cos , sin , , / sin , / cos θ θ ξ ω θ η ω θ , (4) Suppose that the amplitude of the electromagnetic field ε ωo oeE mc= / is sufficiently small and taking into account that the particle will interact efficiently with the wave if it fulfills one of the resonance conditions: k p s sz z h+ − = = − −ω γ 0 2 1 0 1 2, ... , , , , , , ... (5) after averaging over the fast time scale one can find fol- lowing equations, which describe particle motion in the case of an isolated resonance:  ( ) cos( ) /p k v W pz z s o s⊥ ⊥= −1 ε θ  cos( ) / ,  cos( ) / ,p k W Wz z s o s s o s= =ε θ γ γ ε θ γ (6)  / sin( )θ ω γ ε θs z z h o s sk v s F= − + +1 , where F s k v p sJ Js z z y s x s= − − ′ +⊥( ) / ( ( ) / ( ))1 α µ µ α µ + ′ − − − ′ + − ⊥ ⊥ ⊥k v s J sk p p J v J k k v J x h y s x y s z z s x y h z z s 2 1 ω α µ µ α γ µ α µ α ω µ ( ) ( ( ) ( )) ( / )( ) ( ) , W p sJ p J p Js x s y s z z s= − ′ +⊥ ⊥α µ µ α µ α µ( ) / ( ) ( ) , µ ω= ⊥k px h/ , J s ( )µ - the Bessel function, ′J s ( )µ - its derivative over the argument. 3 CONDITIONS OF NONLINEAR RESO- NANCES OVERLAPPING Lets suppose, that during the particle interaction with the wave its energy varies a little, i.e. γ γ γ γ γ= + < <0 0s s s s ~ , ~ , where γ 0s meets the reso- nant condition (5) and in view of the approximate inte- gral of motion: p k a constz z− = =γ , (7) a closed set of equations for θ s and ~γ s can be obtained from (3): ~ cos( ) /γ ε θ γs s o s sW= 0 ,  ( ) ~ /θ γ γs z s sk= −2 01 . (8) Equations (8) are the equations of the mathematical pen- dulum. It is easy to find the width of the nonlinear iso- lated resonance from these equations: ∆ ~ / ( )γ εs o s zW k= −2 1 2 . (9) One ought to notice, that when we derived the equations (8) we neglected the addend ε θ εo s s oF sin( ) ∝ , as- ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2001. №3. Серия: Ядерно-физические исследования (38), с. 86-88. 86 suming it small. It is never correct to do this, when Fs includes the components, which are proportional to 1 / p⊥ and, under condition that p⊥ tends to zero, it is necessary to take it into account. The distance between adjacent resonances was found with the help of the reso- nant conditions (5) and the approximate integral of mo- tion (7): δ γ ω~ / ( )s h zk= −1 2 (10) Relations (9), (10) allow one to put down the general- ized Chirikov’s criterion: ε ωo h s zW k> −2 216 1/ ( ) (11) of the development of the local instability of charged particles motion under their interaction with the electro- magnetic wave in an external magnetic field. The width of the nonlinear resonance ∆ ~γ s under fulfilment the condition (11) becomes greater than the distance between the neighboring resonances δ γ~s . The overlapping of the nonlinear resonances takes place. Then the dynamics of particles becomes chaotic. Let us suppose, that the particle is in resonance with the number s s= ∗ and the amplitude of the field is those, that the stochastic instability of charged particle motion takes place. In space ( γ , ,p pz⊥ ) particle mo- tion is determined by approximate integral (7) and res- onace conditions (5), which in the plane ( p pz⊥ , ) be- come: p s k p k s k s kh z z z h z h z ⊥ − − + − − − − = 2 2 2 2 2 2 2 2 2 1 1 1 1 1 ω ω ω ( ) ( ( ) ) ( ) , k z 2 1≠ , p s p sh z h⊥ − = −2 2 22 1ω ω , k z 2 1= , (12) p s p k s kh z z h z⊥ + − − =2 2 2 2 21 0ω ω( / ( )) , s kh z 2 2 21ω = − . Particle, remaining on the integral (7) diffuses on resonances (12). To estimate the resonance width with number which greatly exceeding s∗ , we find constant a , which is the part of (7). By substituting in integral (7) value of energy (5) we take: a s k p k sz zs z h( ) ( )∗ ∗ ∗= − −1 2 ω . (13) Value p zs∗ we determine from the first equation (12): p s k k k s k p zs h z z z h z s ∗ ∗ ∗ ⊥ ∗= − ± − − − −         ω ω 1 1 1 1 1 2 2 2 2 2 2 (14) Substituting p zs∗ from (13) into (12) we find: a s s k ph z s ( ) ( ) ( )∗ ∗ ⊥ ∗= ± − − −  2 2 2 2 21 1ω (15) Let us suppose now, that the particle has got in the vicinity with number n s> > ∗ . To find width of this resonance it is necessary to calculate pzn and p n⊥ . Using resonance condition and first equation from (12) we find: p a s k n kzn z h z= + −∗( ( ) ) / ( )ω 1 2 , p n kn h z ⊥ = ω . (16) 4 INFLUENCE OF ELECTROMAGNETIC WAVE POLARIZATION ON CHARGED PARTICLES’ ACCELERATION REGIME Estimate width of the nonlinear (9) for wave with circular polarization (  k = {sin , , cos }φ φ0 ,  α φ φ= −{ cos , , sin }i ) when n s> > ∗ : ∆ ~ / sinγ ε ω φn o hc n= 4 1 1 3 3 , ( c1 0 411= . ) (17) and separation between adjacent resonances (10): δ ω φγ n n h, / sin+ =1 2 . (18) Using (17) and (18) we can write the criterion of devel- opment of the stochastic instability of charged particles motion as: 16 11 1 3ε φ ωo hc n / sin / > . (19) From (19) it is seen, that the more n , the better ful- filled inequation (18). It is connect to that width of non- linear resonace (18) increase with growth of number n . Condition (19) is criterion of the particle caption into regime of "unlimited" stochastic acceleration. At given field amplitude, the number of resonance, the particle is in, and cyclotron frequency, (19) allows to estimate the angle range φ , at which "unlimited" stochastic acceler- ation is possible. From (19) it is seen, that transversal propagation of wave with respect to magnetic field is optimal for stochastic acceleration. For wave with linear polarization of type:  α = { , , }0 0i (M-wave) condition (19) does not vary. If polarization has type  α φ φ= −{ cos , , sin }0 (Е-wave), the width of nonlinear resonance decreases with growth of number n : ( )∆ ~ sin*γ ε φn a s c n= −4 0 0 1 3 3 , ( c0 0 477= . ), (20) and criterion (11) is possible to represent as: 16 11 3 2ε φ ωo o hc a s n( ) sin //∗ − > . (21) From (21) it is seen that at big n criterion (21) ceas- es to be fulfilled. It means, that the diffusion of particles in high-energy region through development of stochas- tic instability of charged particles motion due to over- lappings of nonlinear cyclotron resonances (5) is impos- sible. The strong dependence from polarization of wave is explained by structure of function Ws , with which the width of nonlinear resonance is determined. If α y ≠ 0 , at s >> 1 the width of nonlinear resonance is determined by the second term in Ws , which at s >> 1 gives: W ss ∝ 1 3/ . In the case E - wave, when α y = 0 , the width of nonlinear resonance is determined by the first and last terms in Ws , which combination at s >> 1 gives: 31−∝ sWs . 87 5 NUMERICAL ANALYSIS RESULTS In order to demonstrate possibility of "unlimited" stochastic acceleration of charged particles by electro- magnetic wave with polarization  α φ φ= −{ cos , , sin }i , propagating on the angle φ to  Ho , it was numerically solved equations (2) for assembly out of 400 particles, uniformly distributed on phase ψ , c by identical val- ues γ o =1.794 and pzo =0.5. Refractive index N=1. Angle φ π= 0 3. is chosen so, that all particles in initial point of time are in resonance s∗ = 3 . Amplitude of field Eo = 0 2. , cyclotron frequency ω h = 0 5. . The similar calculations were carried out and for the wave with polarization  α φ φ= −{ cos , , sin }0 . The precision of calculations was checked with the help of integral (5) and did not exceed 10-4. At the cho- sen parameters the particles in initial point of time are moving nonregularly. Dependence amplitude of the field E∗ at which the resonances with the numbers s and s+1 are overlapped, from the numbers of resonance s, for the wave with circular polarization  α φ φ= −{ cos , , sin }i is given on Fig. 1 (а), and for Е-wave with polarization  α φ φ= −{ cos , , sin }0 on Fig. 1(b). Fig. 1. Dependence of amplitude of overlapping reso- nances E∗ from resonance number s . It is clear, that for the circular polarized wave with the growth of particle energy the condition of resonance overlapping is fulfill better and better. Maximum value of the number of resonance for Е-wave is s=16 ( γ 16 11≈ ), above this criterion of overlapping nonlinear cyclotron resonances of first or- der is inadequate. On Fig. 2 there is projection of particle trajectory with initial phase ψ = 0 to plane ( γ , pz ) under interaction with circular polarized wave  α φ φ= −{ cos , , sin }i , which is approximate integral (7). Fig.2. Projection of particle trajectory to plane ( γ , pz ) . One can see, that approximate integral is conserved. On Fig. 3-4 the time dependences of particle energy and maximum Lyapunov index for wave with polarization  α φ φ= −{ cos , , sin }i are represented. It is seen that particle dynamics is nonregular. The similar dependences, but for particle moving in the field of E-wave are shown on Fig. 5-6. Fig. 3. Time dependence of particle energy. Fig. 4. Time dependence of Lyapunov index. Fig. 5. Time dependence of particle energy. Fig. 6. Time dependence of Lyapunov index From these figures one can see, that at the chosen parameters of problem the particle dynamics with initial phase ψ =0 is chaotic. Particles with other initial phases behave similarly. On Fig. 7-8 the time dependences of average energy < >γ and S o 2 2= < − >( )γ γ (average on ensemble) are represented at particles motion in the field of wave with circular polarization (а) and in the field of E-wave (b). Fig. 7. Time dependence < >γ . Fig. 8. Time dependence S o 2 2= < − >( )γ γ . It is seen that the rate of energy gain by particles in case (a) considerably exceeds the one in case (b). In case (b), average energy is γ ∝ 5 . The close value for average energy gives criterion (19) γ 16 6∝ . The dif- fusion coefficient, in case (a) more than on the order ex- ceeds diffusion coefficient obtained in case (b). This work was supported partially by STCU grant # 253. 88