Investigation of properties of a spatial lattice formed by resonance dielectric spheres

The artificial dielectric model is used in creation of a material with the negative ε and µ and in describing electromagnetic wave interactions with vital tissues. The paper presents the theoretical study of the frequency properties and electric field distributions in the spatial cubic lattice at s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Вопросы атомной науки и техники
Datum:2004
1. Verfasser: Bryzgalov, G.A.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2004
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/79324
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Investigation of properties of a spatial lattice formed by resonance dielectric spheres / G.A. Bryzgalov // Вопросы атомной науки и техники. — 2004. — № 2. — С. 39-41. — Бібліогр.: 5 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-79324
record_format dspace
spelling Bryzgalov, G.A.
2015-03-31T08:59:43Z
2015-03-31T08:59:43Z
2004
Investigation of properties of a spatial lattice formed by resonance dielectric spheres / G.A. Bryzgalov // Вопросы атомной науки и техники. — 2004. — № 2. — С. 39-41. — Бібліогр.: 5 назв. — англ.
1562-6016
PACS: 78.20.Ci, 41.20.Jb, 42.70.Qs, 73.20.Mf
https://nasplib.isofts.kiev.ua/handle/123456789/79324
The artificial dielectric model is used in creation of a material with the negative ε and µ and in describing electromagnetic wave interactions with vital tissues. The paper presents the theoretical study of the frequency properties and electric field distributions in the spatial cubic lattice at sites of which 216 identical dielectric spheres are placed. Basic oscillation frequencies in the lattice have been defined. Splitting of the frequency performance into bands corresponding to the resonance values of the negative or positive value of εeff is observed. The method for determining the negative values of medium penetrations has been proposed.
Модель штучного діелектрика використовується при створенні матеріалів з негативними ε і µ, а також при описі взаємодії електромагнітних хвиль з живими тканинами. Експериментально досліджуються частотні властивості і розподіл електричних полів в просторових кубічних гратках, у вузлах якої розміщено 216 однакових діелектричних сфер. Визначені частоти основних видів коливань в гратках. Спостерігається розщеплювання частотної характеристики на смуги, що відповідають резонансним значенням негативної або позитивної величини εэфф. Запропонований метод визначення негативного значення проникностей середовища.
Модель искусственного диэлектрика используется при создании материалов с отрицательными ε и µ, а также при описании взаимодействия электромагнитных волн с живыми тканями. Экспериментально исследуются частотные свой- ства и распределение электрических полей в пространственной кубической решетке, и узлах которой размещены 216 одинаковых диэлектрических сфер. Определены частоты основных видов колебаний в решетке. Наблюдается расщепление частотной характеристики на полосы, соответствующие резонансным значениям отрицательной или положительной величины εэфф. Предложен метод определения отрицательного значения проницаемостей среды.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Новые и нестандартные ускорительные технологии
Investigation of properties of a spatial lattice formed by resonance dielectric spheres
Дослідження властивостей просторових решіток, утворених резонансними діелектричними сферами
Исследование свойств пространственной решетки, образованной резонансными диэлектрическими сферами
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Investigation of properties of a spatial lattice formed by resonance dielectric spheres
spellingShingle Investigation of properties of a spatial lattice formed by resonance dielectric spheres
Bryzgalov, G.A.
Новые и нестандартные ускорительные технологии
title_short Investigation of properties of a spatial lattice formed by resonance dielectric spheres
title_full Investigation of properties of a spatial lattice formed by resonance dielectric spheres
title_fullStr Investigation of properties of a spatial lattice formed by resonance dielectric spheres
title_full_unstemmed Investigation of properties of a spatial lattice formed by resonance dielectric spheres
title_sort investigation of properties of a spatial lattice formed by resonance dielectric spheres
author Bryzgalov, G.A.
author_facet Bryzgalov, G.A.
topic Новые и нестандартные ускорительные технологии
topic_facet Новые и нестандартные ускорительные технологии
publishDate 2004
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Дослідження властивостей просторових решіток, утворених резонансними діелектричними сферами
Исследование свойств пространственной решетки, образованной резонансными диэлектрическими сферами
description The artificial dielectric model is used in creation of a material with the negative ε and µ and in describing electromagnetic wave interactions with vital tissues. The paper presents the theoretical study of the frequency properties and electric field distributions in the spatial cubic lattice at sites of which 216 identical dielectric spheres are placed. Basic oscillation frequencies in the lattice have been defined. Splitting of the frequency performance into bands corresponding to the resonance values of the negative or positive value of εeff is observed. The method for determining the negative values of medium penetrations has been proposed. Модель штучного діелектрика використовується при створенні матеріалів з негативними ε і µ, а також при описі взаємодії електромагнітних хвиль з живими тканинами. Експериментально досліджуються частотні властивості і розподіл електричних полів в просторових кубічних гратках, у вузлах якої розміщено 216 однакових діелектричних сфер. Визначені частоти основних видів коливань в гратках. Спостерігається розщеплювання частотної характеристики на смуги, що відповідають резонансним значенням негативної або позитивної величини εэфф. Запропонований метод визначення негативного значення проникностей середовища. Модель искусственного диэлектрика используется при создании материалов с отрицательными ε и µ, а также при описании взаимодействия электромагнитных волн с живыми тканями. Экспериментально исследуются частотные свой- ства и распределение электрических полей в пространственной кубической решетке, и узлах которой размещены 216 одинаковых диэлектрических сфер. Определены частоты основных видов колебаний в решетке. Наблюдается расщепление частотной характеристики на полосы, соответствующие резонансным значениям отрицательной или положительной величины εэфф. Предложен метод определения отрицательного значения проницаемостей среды.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/79324
citation_txt Investigation of properties of a spatial lattice formed by resonance dielectric spheres / G.A. Bryzgalov // Вопросы атомной науки и техники. — 2004. — № 2. — С. 39-41. — Бібліогр.: 5 назв. — англ.
work_keys_str_mv AT bryzgalovga investigationofpropertiesofaspatiallatticeformedbyresonancedielectricspheres
AT bryzgalovga doslídžennâvlastivosteiprostorovihrešítokutvorenihrezonansnimidíelektričnimisferami
AT bryzgalovga issledovaniesvoistvprostranstvennoirešetkiobrazovannoirezonansnymidiélektričeskimisferami
first_indexed 2025-11-25T20:43:13Z
last_indexed 2025-11-25T20:43:13Z
_version_ 1850529158319308800
fulltext INVESTIGATION OF PROPERTIES OF A SPATIAL LATTICE FORMED BY RESONANCE DIELECTRIC SPHERES G.A. Bryzgalov NSC “Kharkov Institute of Physics and Technology” Akademicheskaya, 1, 61108, Kharkov, Ukraine, e-mail: bryzgalov@kipt.kharkov.ua The artificial dielectric model is used in creation of a material with the negative ε and µ and in describing elec- tromagnetic wave interactions with vital tissues. The paper presents the theoretical study of the frequency properties and electric field distributions in the spatial cubic lattice at sites of which 216 identical dielectric spheres are placed. Basic oscillation frequencies in the lattice have been defined. Splitting of the frequency performance into bands cor- responding to the resonance values of the negative or positive value of εeff is observed. The method for determining the negative values of medium penetrations has been proposed. PACS: 78.20.Ci, 41.20.Jb, 42.70.Qs, 73.20.Mf The artificial dielectric model is often used in differ- ent theoretical considerations [1,2,3], though the sys- tematic comparison between calculated and experimen- tally measured values of effective permittivity had been carried out only for the simplest lattices formed by infi- nite thin ideally conducting discs [4]. In papers [2,3] it was shown that dispersive proper- ties of an artificial dielectric formed by the regular lat- tice of spherical particles can take any large positive and negative values, .if dispersion is caused by the depen- dence of a scattering coefficient on the frequency, val- ues of εp and µp characterizing electromagnetic wave scattering on spherical particles. It means that in the ar- tificial dielectric lattice in cases when particles them- selves have a high permittivity, the resonance frequen- cies are possible, for that permittivity convert into infin- ity. These frequencies are found from the following transcendental equations Cii р р δ= ε−ωε ε+ωε 1 12 )( )( , (1) where C is the particle concentration, 1ε is the permit- tivity of a particle material, iiδ are the components of the tensor of penetrations of the spatial lattice formed by spherical particles. In this paper the dispersive performances of spatial lattices formed by dielectric spheres, and the electrical field distribution are experimentally studied. Firstly, the simple method has been proposed to define the negative value of effective permittivity. The experimental research of electrodynamical pa- rameters of cubic lattices at the sites of which there were spherical dielectric scatters, was carried out. From 216 dielectric spheres in foam rubber holders the cubic spatial structure of 6×6×6 elements is formed. The dis- tance between spheres was chosen equal to 10 mm. The dielectric sphere material is ceramics based on titanium dioxide with the permittivity ε≈80, tgδ≈1⋅10-3. Spheres of about 10 mm in diameter were prepared with deflec- tion from the sphericity ≈1...2 µm. In the process of sphere choice according to the frequency their tuning was carried out by decreasing in diameter so that the nominal frequency was equal to 3075 MHz with the ac- curacy of choosing ±2.5 MHz. The resonance frequency was defined according to the maximal value of the re- flection coefficient of the H10 wave from the sphere placed in the center of the cross section of 32×72 mm waveguide. The resonance frequency corresponded to the first magnetic resonance and structure of TE101 elec- tromagnetic oscillations in the dielectric sphere. The measuring section was placed between the waveguide reflectometer and matched waveguide load. The power supply was delivered from the high frequency generator by the pin vibrator the axis of which was in the E vector plane of excited in the structure oscillations correspond- ing to TE101, TM101 and TM201 modes of oscillations in the separate sphere. The probe in the shape of the pin vi- brator placed on the opposite lattice side recorded a sig- nal. The electrical field intensity distribution in the space between dielectric spheres by scatters was measured us- ing the small perturbation method [5]. The method is based on the measurement of resonance wavelength in the structure during introducing a perturbating body of a small volume ∆τ in the region under study. This shift of a resonance wavelength is defined by the Slater pertur- bation theorem that can be expressed by the equation cp HE V W WWk dVEH drHdrE k ∆−∆−= ε+µ µ−ε −= λ λ∆ ∫ ∫ ∫ τ∆ τ∆ )( 22 22 2 , (2) where EW∆ and HW∆ are the variations of a stored energy in the electrical and magnetic fields of the cavity during introducing the perturbating body, cpW is the av- erage energy stored in the cavity at a high frequency os- cillation period, k is the proportionality factor defined by the geometry and electromagnetic properties of the perturbating body material ( 1→k for 0→τ∆ ). For the resonance structure with the positive value of the effective permittivity the measured frequency shift will be directed to the side of resonance frequency decreasing. Fig.1,a shows the resonance curve shifted to the left side Fр→Fр1 at introducing the perturbating body in the Е-field region, and the signal amplitude at the operating point 1 will increase (the arrow direction 1→1 ′). On the high frequency slope at the operating point 2 the signal amplitude will decrease (2→2′). If the effec- ___________________________________________________________ PROBLEMS OF ATOMIC SIENCE AND TECHNOLOGY. 2004. № 2. Series: Nuclear Physics Investigations (43), p.39-41. 39 mailto:bryzgalov@kipt.kharkov.ua tive permittivity will vary its sign then the sign cpW of the stored energy in the electrical field of the resonance structure will vary. It will result in the reso- nance curve shift to the right side Fр→Fр2, as it is shown in Fig. 1b. The signal amplitude decrease will be ob- served at the operating point 1 (1→1′), and the increase will be at the operating point 2 (2→2′). Thus, we shall define resonance frequency bands with positive and negative values of the effective permittivity. In our case for the reliable recording of the frequen- cy shift we have used the perturbating body in a shape of the thin copper cylinder 10 mm long and 3 mm in di- ameter. The signal from the output probe was detected and amplified by the correlated amplifier B8-6 and syn- chronously with the movement of the perturbating body recorded by the recorder. The lattice passbands for the first magnetic reso- nance corresponding to the ТЕ101 mode were defined in the single spherical dielectric cavity. It is the band of 2960...3130 MHz. The amplitude – frequency perfor- mance in this passband of a lattice is presented in Fig.2. The second passband corresponding to the first electri- cal resonance and ТМ101 mode in the single dielectric sphere equals to 4328...4390 MHz. The third passband corresponding to the ТЕ201 mode equals to 6040...6280 MHz. In general case the dispersion equation for ТЕ modes of the single sphere has two groups of roots [3]. The first group of roots determines dielectric sphere electromagnetic oscillations concentrated in the internal sphere region. They have been named as internal or “in- put” modes of oscillations. The second group of roots determines proper dielectric sphere oscillations concen- trated basically outside the sphere volume in the space around it, therefore such oscillations have been named “output” modes of oscillations of the dielectric cavity. “Input” and “output” modes are intercollected and have the similar structure of the electromagnetic field. They do not exist separately. We observed it during measure- ments of the amplitude – frequency performance of a lattice. Each resonance splits into two ones correspond- ing to “input” and “output” modes. These resonances are without fail overlapped in the frequency providing 0 20 40 60 80 100 120 140 0.0 0.2 0.4 0.6 0.8 1.0 a) 3123,57 IHz A m p lit u d e Z, ii 0 20 40 60 80 100 120 140 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 b) 3123,0 IHzA m p li tu d e Z, ii 0 20 40 60 80 100 120 140 0.0 0.2 0.4 0.6 0.8 1.0 c) 3121,9 МHz A m p li m u d e Z, мм 0 20 40 60 80 100 120 140 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 d) 3121,3 МHz A m p li tu d e Z, мм Fig.1. Resonance frequency shift Fp of a structure during introducing a perturbating body in the E-field region: a – the effective permittivity of a structure is positive, b – the effective permittivity of a structure is negative 3000 3020 3040 3060 3080 3100 3120 0.0 0.2 0.4 0.6 0.8 1.0 IIIIII A m pl it ud e Frequency, MHz Fig.2. Amplitude – frequency performance of an artificial dielectric with the cubic structure of a lattice at sites of these dielectric spheres of 10 mm in diameter and distance between them 10 mm are placed. Power supply is in the E – field plane of the TE101 mode Fig.3. Electrical field distribution in a cubic lattice be- tween spheres along the Z coordinate at frequencies of apexes of the double resonance curve: a,c – on high frequency slope; b,d - on the low frequency slope. The coordinate of the first sphere center is 18 mm 40 40 intermode coupling. Fig.3 shows the structure of an electric field distribution in the lattice along the Z direc- tion, when the cylinder axis of a perturbating body coin- cides with the plane of the Е – field of a single sphere. Fields have been measured on slopes of apexes of the double resonance with frequencies Fp1=3121.5 MHz and Fp2=3123,3 MHz. Frequency values of an operating point on slopes of the resonance curve without perturbat- ing body are given in the figure. We observe the frequen- cy increase during introducing the perturbating body both on left – hand and right – hand apexes of resonances. The signal decreases on low frequency slopes and increases on high frequency ones. This is the evidence of the nega- tive value of the effective permittivity of a spatial lattice in this resonance band. Fields of all lattice resonances shown in Fig.2 have been researched. Resonances in the region Ι have positive values of εeff. Resonances in the re- gion ΙΙΙ have negative values of εeff. Resonances in the re- gion ΙΙ have both positive and negative values of εeff at various distances of the perturbating body motion, i.e. in separate layers of the spatial lattice. The thin copper disc has measured the direction and value of magnetic fields in a lattice for one from reso- nance bands of 3120...3123 MHz. Obtained values of fields correspond to negative values of permittivity. Since the permittivity of this band is also negative then these preliminary results allow to say about the simulta- neous existence of negative values of ε and µ. The electrical field distribution along the Z coordi- nate has shown that together with modulation by spheres there is the spatial modulation by structure boundaries. Thus, for the resonance frequency of 3129 MHz there is one sinusoidal variation modulated by six layers of a sphere. The double resonance 3121.5 MHz and 3123.3 MHz has two spatial variations modulated by six layers of spheres, and so on. The max- imum number of observed variants of a field equals to six. There is such a number of double resonances in Ι and ΙΙΙ frequency bands. There are three double reso- nances in the frequency band ΙΙ. The investigation of the electrical field distribution between lattice spheres along Х and Y coordinates has shown that each resonance is due to basic resonances on one from three mutually perpendicular planes and reso- nances in two other ones. It is the evidence of anisotropy of properties of the cubic lattice at sites of that spherical dielectric scatters are placed. Studies of the lattice fields for ТМ101 and ТЕ201 modes in the single sphere have also shown the pres- ence of passbands with negative and positive values of ε eff. In case if the number of spheres in a lattice increases then the frequency spectrum is condensed and separate resonances form one band. Thus, studies of electromagnetic properties of a cu- bic lattice at sites of which the resonance spherical di- electric scatters are placed, where the ТЕ101 mode is ex- cited, have shown that the lattice has passbands corre- sponding to positive and negative values of permittivity. Resonance bands have been defined, in which the alter- nation of positive and negative values of permittivity is observed in lattice layers. Preliminary measured results demonstrating the simultaneous presence of negative values of ε and µ have been obtained. These effects may be used for the creation of novel artificial dielectrics with negative ε and µ and for researching electromag- netic wave interactions with tissues in vivo, sells of which form the regular spatial lattice, and their nuclei are the resonance scatters. The simple and effective method has been proposed to define the negative value of medium penetrations. REFERENCES 1. Ya.B. Fainberg, N.A. Khizhnyak. Artificial anisotropic medium // Zhournal Teoreticheskoj Fiziki. 1955, v.25, №5, p.711-720. 2. N.A Khizhnyak. Artificial anisotropic dielectrics // Zhournal Teoreticheskoj Fiziki. 1957, v.27, №9, p.2006-2038. 3. N.A. Khizhnyak. Integral equations of macroscop- ic electrodynamics. Kiev: Naukova Dumka, 1986, p.280. 4. V.B. Kazansky, L.N. Litvinenko, R.V. Shapiro, V.P. Shestopalov. Theoretical and experimental study of properties of artificial metal dielectrics // Izvestiya Vuzov. Radiofizika. 1979, v.22, №8, p.1002-1011. 5. J. Slater. Electronics of M.W. Frequencies // Sov. Radio. 1948, p.250. (In Russian). ИССЛЕДОВАНИЕ СВОЙСТВ ПРОСТРАНСТВЕННОЙ РЕШЕТКИ, ОБРАЗОВАННОЙ РЕЗОНАНСНЫМИ ДИЭЛЕКТРИЧЕСКИМИ СФЕРАМИ Г.А. Брызгалов Модель искусственного диэлектрика используется при создании материалов с отрицательными ε и µ, а также при описании взаимодействия электромагнитных волн с живыми тканями. Экспериментально исследуются частотные свой- ства и распределение электрических полей в пространственной кубической решетке, и узлах которой размещены 216 одинаковых диэлектрических сфер. Определены частоты основных видов колебаний в решетке. Наблюдается расщепле- ние частотной характеристики на полосы, соответствующие резонансным значениям отрицательной или положительной величины εэфф. Предложен метод определения отрицательного значения проницаемостей среды. ДОСЛІДЖЕННЯ ВЛАСТИВОСТЕЙ ПРОСТОРОВИХ РЕШІТОК, УТВОРЕНИХ РЕЗОНАНСНИМИ ДІЕЛЕКТРИЧНИМИ СФЕРАМИ Г.О. Бризгалов Модель штучного діелектрика використовується при створенні матеріалів з негативними ε і µ, а також при описі взаємодії електромагнітних хвиль з живими тканинами. Експериментально досліджуються частотні властивості і ___________________________________________________________ PROBLEMS OF ATOMIC SIENCE AND TECHNOLOGY. 2004. № 2. Series: Nuclear Physics Investigations (43), p.39-41. 41 розподіл електричних полів в просторових кубічних гратках, у вузлах якої розміщено 216 однакових діелектричних сфер. Визначені частоти основних видів коливань в гратках. Спостерігається розщеплювання частотної характеристики на смуги, що відповідають резонансним значенням негативної або позитивної величини εэфф. Запропонований метод визначення негативного значення проникностей середовища. 42 42 G.A. Bryzgalov REFERENCES Г.А. Брызгалов Г.О. Бризгалов