Modeling and forming the magnetic field of the heavy ion cyclotron

The heavy ion cyclotron was designed and constructed in the Dzhelepov Laboratory of Nuclear Problem, Joint Institute for Nuclear Research. Ions with A/Z~5 were accelerated up to the energy E=2.4 MeV/nucleon. The ECR source with an intensity of 3.5⋅10¹² ions/sec is used as an ion source. The extr...

Full description

Saved in:
Bibliographic Details
Published in:Вопросы атомной науки и техники
Date:2004
Main Authors: Alenitsky, Yu.G., Chesnov, A.F., Kostromin, S.A., Onischenko, L.M., Samsonov, E.V., Zaplatin, N.L.
Format: Article
Language:English
Published: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2004
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/79366
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Modeling and forming the magnetic field of the heavy ion cyclotron / Yu.G. Alenitsky, A.F. Chesnov, S.A. Kostromin, L.M. Onischenko, E.V. Samsonov, N.L. Zaplatin // Вопросы атомной науки и техники. — 2004. — № 2. — С. 78-80. — Бібліогр.: 5 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-79366
record_format dspace
spelling Alenitsky, Yu.G.
Chesnov, A.F.
Kostromin, S.A.
Onischenko, L.M.
Samsonov, E.V.
Zaplatin, N.L.
2015-03-31T14:51:12Z
2015-03-31T14:51:12Z
2004
Modeling and forming the magnetic field of the heavy ion cyclotron / Yu.G. Alenitsky, A.F. Chesnov, S.A. Kostromin, L.M. Onischenko, E.V. Samsonov, N.L. Zaplatin // Вопросы атомной науки и техники. — 2004. — № 2. — С. 78-80. — Бібліогр.: 5 назв. — англ.
1562-6016
PACS: 29.20.Hm.
https://nasplib.isofts.kiev.ua/handle/123456789/79366
The heavy ion cyclotron was designed and constructed in the Dzhelepov Laboratory of Nuclear Problem, Joint Institute for Nuclear Research. Ions with A/Z~5 were accelerated up to the energy E=2.4 MeV/nucleon. The ECR source with an intensity of 3.5⋅10¹² ions/sec is used as an ion source. The extracted beam of ~10¹¹ ions/sec is intended for the track membrane production. The magnetic field of this cyclotron is formed in the compact magnet with the pole diameter 1.6 m by means of four pairs of sector shims installed symmetrically up and down. The gaps are 100 mm, and 40 mm between the poles and shims, respectively. The proper dependence of the isochronous magnetic field on the radius is created, basically, by increasing the angular extension of sector shims inside the range α = 30º...41.8º. Power consumption of an electromagnet is 25 kW.
Циклотрон для прискорення важких іонів спроектований і виготовлений у Лабораторії Ядерних Проблем ім. В.П. Джелепова ОІЯД. Основні параметри магнітної системи циклотрона отримані на підставі розрахунків по аналітичних формулах, за умови рівномірного намагнічування об'єму ферромагнетика, а також по двомірній програмі з використанням сіткової методики (FEMM). Для вибору форми секторних шимм була виготовлена модель магнітної системи в масштабі 1:2,5. Приведено основні параметри магнітної системи і результати моделювання і формування магнітного поля циклотрона.
Циклотрон для ускорения тяжелых ионов спроектирован и изготовлен в Лаборатории Ядерных Проблем им. В.П. Джелепова ОИЯИ. Основные параметры магнитной системы циклотрона получены на основании расчетов по аналитическим формулам, при условии равномерного намагничивания объёма ферромагнетика, а также по двухмерной программе с использованием сеточной методики (FEMM). Для выбора формы секторных шимм была изготовлена модель магнитной системы в масштабе 1:2,5. Приведены основные параметры магнитной системы и результаты моделирования и формирования магнитного поля циклотрона.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Элементы ускорителей
Modeling and forming the magnetic field of the heavy ion cyclotron
Моделювання і формування магнітного поля циклотрона важких іонів
Моделирование и формирование магнитного поля циклотрона тяжелых ионов
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Modeling and forming the magnetic field of the heavy ion cyclotron
spellingShingle Modeling and forming the magnetic field of the heavy ion cyclotron
Alenitsky, Yu.G.
Chesnov, A.F.
Kostromin, S.A.
Onischenko, L.M.
Samsonov, E.V.
Zaplatin, N.L.
Элементы ускорителей
title_short Modeling and forming the magnetic field of the heavy ion cyclotron
title_full Modeling and forming the magnetic field of the heavy ion cyclotron
title_fullStr Modeling and forming the magnetic field of the heavy ion cyclotron
title_full_unstemmed Modeling and forming the magnetic field of the heavy ion cyclotron
title_sort modeling and forming the magnetic field of the heavy ion cyclotron
author Alenitsky, Yu.G.
Chesnov, A.F.
Kostromin, S.A.
Onischenko, L.M.
Samsonov, E.V.
Zaplatin, N.L.
author_facet Alenitsky, Yu.G.
Chesnov, A.F.
Kostromin, S.A.
Onischenko, L.M.
Samsonov, E.V.
Zaplatin, N.L.
topic Элементы ускорителей
topic_facet Элементы ускорителей
publishDate 2004
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Моделювання і формування магнітного поля циклотрона важких іонів
Моделирование и формирование магнитного поля циклотрона тяжелых ионов
description The heavy ion cyclotron was designed and constructed in the Dzhelepov Laboratory of Nuclear Problem, Joint Institute for Nuclear Research. Ions with A/Z~5 were accelerated up to the energy E=2.4 MeV/nucleon. The ECR source with an intensity of 3.5⋅10¹² ions/sec is used as an ion source. The extracted beam of ~10¹¹ ions/sec is intended for the track membrane production. The magnetic field of this cyclotron is formed in the compact magnet with the pole diameter 1.6 m by means of four pairs of sector shims installed symmetrically up and down. The gaps are 100 mm, and 40 mm between the poles and shims, respectively. The proper dependence of the isochronous magnetic field on the radius is created, basically, by increasing the angular extension of sector shims inside the range α = 30º...41.8º. Power consumption of an electromagnet is 25 kW. Циклотрон для прискорення важких іонів спроектований і виготовлений у Лабораторії Ядерних Проблем ім. В.П. Джелепова ОІЯД. Основні параметри магнітної системи циклотрона отримані на підставі розрахунків по аналітичних формулах, за умови рівномірного намагнічування об'єму ферромагнетика, а також по двомірній програмі з використанням сіткової методики (FEMM). Для вибору форми секторних шимм була виготовлена модель магнітної системи в масштабі 1:2,5. Приведено основні параметри магнітної системи і результати моделювання і формування магнітного поля циклотрона. Циклотрон для ускорения тяжелых ионов спроектирован и изготовлен в Лаборатории Ядерных Проблем им. В.П. Джелепова ОИЯИ. Основные параметры магнитной системы циклотрона получены на основании расчетов по аналитическим формулам, при условии равномерного намагничивания объёма ферромагнетика, а также по двухмерной программе с использованием сеточной методики (FEMM). Для выбора формы секторных шимм была изготовлена модель магнитной системы в масштабе 1:2,5. Приведены основные параметры магнитной системы и результаты моделирования и формирования магнитного поля циклотрона.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/79366
citation_txt Modeling and forming the magnetic field of the heavy ion cyclotron / Yu.G. Alenitsky, A.F. Chesnov, S.A. Kostromin, L.M. Onischenko, E.V. Samsonov, N.L. Zaplatin // Вопросы атомной науки и техники. — 2004. — № 2. — С. 78-80. — Бібліогр.: 5 назв. — англ.
work_keys_str_mv AT alenitskyyug modelingandformingthemagneticfieldoftheheavyioncyclotron
AT chesnovaf modelingandformingthemagneticfieldoftheheavyioncyclotron
AT kostrominsa modelingandformingthemagneticfieldoftheheavyioncyclotron
AT onischenkolm modelingandformingthemagneticfieldoftheheavyioncyclotron
AT samsonovev modelingandformingthemagneticfieldoftheheavyioncyclotron
AT zaplatinnl modelingandformingthemagneticfieldoftheheavyioncyclotron
AT alenitskyyug modelûvannâíformuvannâmagnítnogopolâciklotronavažkihíonív
AT chesnovaf modelûvannâíformuvannâmagnítnogopolâciklotronavažkihíonív
AT kostrominsa modelûvannâíformuvannâmagnítnogopolâciklotronavažkihíonív
AT onischenkolm modelûvannâíformuvannâmagnítnogopolâciklotronavažkihíonív
AT samsonovev modelûvannâíformuvannâmagnítnogopolâciklotronavažkihíonív
AT zaplatinnl modelûvannâíformuvannâmagnítnogopolâciklotronavažkihíonív
AT alenitskyyug modelirovanieiformirovaniemagnitnogopolâciklotronatâželyhionov
AT chesnovaf modelirovanieiformirovaniemagnitnogopolâciklotronatâželyhionov
AT kostrominsa modelirovanieiformirovaniemagnitnogopolâciklotronatâželyhionov
AT onischenkolm modelirovanieiformirovaniemagnitnogopolâciklotronatâželyhionov
AT samsonovev modelirovanieiformirovaniemagnitnogopolâciklotronatâželyhionov
AT zaplatinnl modelirovanieiformirovaniemagnitnogopolâciklotronatâželyhionov
first_indexed 2025-11-26T21:08:17Z
last_indexed 2025-11-26T21:08:17Z
_version_ 1850775223390961664
fulltext MODELING AND FORMING THE MAGNETIC FIELD OF THE HEAVY ION CYCLOTRON Yu.G.Alenitsky, A.F.Chesnov, S.A.Kostromin, L.M.Onischenko, E.V.Samsonov, N.L.Zaplatin Dzhelepov Laboratory of Nuclear Problem, Joint Institute for Nuclear Research, 141980, Str.Joliot-Curie, 6, Dubna, Russia, fax:+7-09621-66666 E-mail alen@nusun.jinr.ru The heavy ion cyclotron was designed and constructed in the Dzhelepov Laboratory of Nuclear Problem, Joint Institute for Nuclear Research. Ions with A/Z~5 were accelerated up to the energy E=2.4 MeV/nucleon. The ECR source with an intensity of 3.5⋅1012 ions/sec is used as an ion source. The extracted beam of ~1011 ions/sec is intend- ed for the track membrane production. The magnetic field of this cyclotron is formed in the compact magnet with the pole diameter 1.6 m by means of four pairs of sector shims installed symmetrically up and down. The gaps are 100 mm, and 40 mm between the poles and shims, respectively. The proper dependence of the isochronous magnet- ic field on the radius is created, basically, by increasing the angular extension of sector shims inside the range α = 30º...41.8º. Power consumption of an electromagnet is 25 kW. PACS: 29.20.Hm. 1. INTRODUCTION The heavy ion fixed energy cyclotron based on the compact magnet with the pole diameter 1.6 m was de- signed and constructed in JINR. The ions with A/Z=5 were accelerated up to the energy E=2.4 MeV/nucleon for track membrane production. The isochronous mag- net field is formed by means of the fore pair of sector shims. The beam phase shift in the formed field is less then ± 10º of RF, and the first magnetic field harmonic is less then 3 G in all the radii of the beam acceleration. Power consumption of the magnet is 25 kW. The analyt- ical formulas assuming a uniform magnetization of the magnet elements were used for the preliminary choice of the magnet structure. The 2D computer simulation based on a mesh technique (FEMM) was used to check this choice. To find the final form of the sector shims the magnetic model with scale 1:2.5 was constructed. The 3D computer simulation based on RADIA code was made to determine an influence of some parts of the magnet on the field structure. The choice of main pa- rameters of the magnet and the modeling and forming the isochronous field are described below. 2. CHOICE OF THE BASIC PARAMETERS OF THE MAGNETIC SYSTEM Analytical formulas assuming a uniform magnetiza- tion of the magnet elements were used for the prelimi- nary choice of the magnet structure [1]. A 2D computer simulation based on a mesh technique was used [2] to check this choice. To find the final form of the sector shims the magnetic model on a scale 1:2.5 was con- structed [3]. The 3D computer simulation based on the RADIA code [4] was carried out to determine an influ- ence of some parts of the magnet on the field structure. The H-shape electromagnet is used for cyclotron. Four pairs of sector shims are placed on the poles to provide axial focusing. At the same time, an increase in their angular size with the radius from α=30˚ in center to α=41.8˚ at the last radii is used to form the isochronous magnetic field. Poles and yokes of the mag- net have axial holes for the axial injection. The main pa- rameters of magnetic system are given in the Table and the view of computing model is shown in Fig.1. The basic parameters of the cyclotron magnetic system Overall dimensions of yoke (mm3) 3700х2000 х1650 Diameter of poles (mm) 1600 Gap between poles (mm) 100 Weight of iron (t) 83 Height of sectors (mm) 30 Gap between coils (mm) 200 Section of the coil (mm) 260 х 200 Section of the coil on copper (mm) 220 х 160 Ampere – turns of the coil (kA) ~95 Cross section of the conductor (mm) 18.5х18.5 Coil current (A) 524 Voltage on the coil (V) 50 Power consumption (kW) 25 Weight of copper (t) 2.4 Fig.1. Main view of 3D computing model The sector shims whose form was chosen for model- ing (Figs.2,3) were fabricated (Fig.4) at the factory with a high accuracy. The valley shims applied to exact cre- ation of the isochronous field and for correction of the first harmonic of the cyclotron magnetic field are also shown in Figs.2,3. In the coil case of the cyclotron magnet’s internal cylinder and ring inverted to the horizontal yoke are made of steel to provide a growing average field in the gap of the magnet. A quarter of the magnet pole with ___________________________________________________________ PROBLEMS OF ATOMIC SIENCE AND TECHNOLOGY. 2004. № 2. Series: Nuclear Physics Investigations (43), p.78-80. 78 mailto:alen@nusun.jinr.ru sector and valley shims and steel elements of the coil case are shown in Fig.2. 0 250 500 750 1000 X  500 0 500 Y 100200300Z 0 250 500 750 1000 X 100200300Z Fig.2. 3D computing model of ¼ pole, one sector and valley shims and the ferromagnetic parts of the coil case Fig.3. Pole with sector and valley shims up cross sec- tion; down-plane view Fig.4. In foreground-bottom pole with the vacuum chamber, on the left-top pole with the cover of the vacu- um chamber An influence of steel elements of coil cases comput- ed by the 3D code Radia on a magnetic field is shown in Fig.5. The curve dB represents a difference between the calculated average magnetic field with steel elements and without them. It is seen, that these constructive ele- ments of the coil case create a magnetic field smoothly growing on a radius up to 300 G. The difference be- tween the calculated dB and experimental field was found less than 10 G. 0 100 200 300 400 500 600 700 800 0,00 0,01 0,02 0,03 dB (T ) R(cm) Fig.5. Magnetic field of the coils case steel elements computed by the 3D code Radia To measure the magnetic field we have designed and constructed a measuring system comprising: 1. Mechanical system that provides both azimuthal (by step motor) and radial (manually) moving of the Hall probe. 2. PC with the codes for control of the measuring system and for preliminary computing of the measurement results. The axial betatron frequency Qz is equal (0.05...0.4) inside the radial range (0,05...0,75) m, while the radial betatron frequency Qr changes from 1.0 to 1.01. Close- ness Qr to unity requires to form the average magnetic field with a high accuracy and establishes the upper lim- it 3G for the first harmonic of imperfections. During the magnet production all measures were taken to fabricate the gap between poles (h=100 mm) and the gaps between all four pairs of sector shims (h=40мм) with an accuracy Δh<0.05 mm To guarantee this requirement all planes of the yoke parts and poles that come into contact with each other were polished. In spite of these efforts the gaps between sectors were found (after installing the magnet on the place) exceeding the nominal size of 40 mm by 0.06...0.13 mm. Then stainless steel inserts of proper size 40.1±0.01 mm were fabricated and installed between each pair of sectors at radii 780– 800 mm where they do not cross the beam path. 3. FORMING OF CYCLOTRON MAGNETIC FIELD The proper dependence of the average magnetic field on radius is created, basically, by increasing the angular extent of the sector shims. In addition the valley shims are placed for exact shimming of the average field and for correction of the first harmonic. The exter- nal borders of the valley shims are shown in Fig.3. This is unique place for the valley shims arrangement, be- cause two opposite valleys are used for the dees. The result of measuring the magnetic field without valley shims is shown in Fig.6 (curve 1). It is evident that the magnetic field in the range of R=660...740 mm is higher then needed one even without the valley shims. Hence the only possible decision was to extract some part of steel from the sector shims. To find experimen- tally the proper quantity of steel which has to be extract- ed, some of steel bolts which fix the sector shims to the pole at a radius of 710 mm were changed by stainless steel ones. Using the results of these experiments it was ___________________________________________________________ PROBLEMS OF ATOMIC SIENCE AND TECHNOLOGY. 2004. № 2. Series: Nuclear Physics Investigations (43), p.78-80.79 decided to make in each sector shim two 21 mm holes placed at the radius 740 mm at the angle 17˚ symmetri- cally to the sector shims axe (Fig.3). 0 10 20 30 40 50 60 70 80 14,7 14,8 14,9 15,0 15,1 14,7 14,8 14,9 15,0 15,1 Bis2 1Bm (k G) R (cm) Fig.6. Average magnetic field: Bis-(required); 1-first measurement;2-measurement with valley shims 0 20 40 60 80 14,5 14,6 14,7 14,8 14,9 15,0 dFi B19 dF i (d eg ) B is B 21 B ( kG ) R (cm) -50 0 50 100 150 200 Fig.7. Average magnetic field: Bis-designed; B19-without valley shims; B21-final after shimming; dFi-calculated beam phase shift The obtained average field with such holes is shown in Fig.7 (curve В19). This field is lower than needed one and therefore the valley shims were used to form the needed field. The final average magnetic field 0,004 0,002 0,000 0,002 0,004 0 30 60 90 120 150 180 210 240 270 300 330 IV III II I B 1 (k G ) exp 24 ось магнита, проходящая через стойки цифрами указаны радиусы измерений в см 40 60 68 64 70 75 77 fi mes 0 2 4 6 8 10 Fig.8. Amplitude and phase of the first harmonic of a magnetic field formed with the valley shims is shown in Fig.7 (curve B21). The corresponding beam phase shift does not ex- ceed ~±10° RF (Fig.7, curve dFi). The first harmonic B1 of the magnetic field was found less then 5 G just after installation of the magnet. This good result is explained by a high accuracy of fabrication and assembling the magnet. Rather small changes of valley shims have allowed to decrease B1<3G. The amplitude and the phase of the first har- monic for the different radii are shown in Fig.8. For radii R<40 cm B1 is less than 2 G. 4. CONCLUSIONS The analytical formulas, the 2D computer simulation and the modeling of the magnet element were used for the preliminary choice of the magnet structure. For ex- act approach to the isochronous field the valley shims were used. The small value of the first harmonic is the result of a high accuracy of fabrication of the ferromag- netic elements. In August 2002 the beam of ions 40Ar8+ was acceler- ated up to final radius, beam losses during acceleration were not significant [5]. REFERENCES 1. V.I. Danilov. Forming the magnetic field for the ac- celerators with space variation, Dissertation, Dub- na, 1959, (in Russian) 2. httm://femm.berlios.de/index.html 3. Yu.G.Alenitsky et al Modeling of the magnetic sys- tem of isochronous cyclotron CYTRECK // Com- munications of JINR, Р9-2002-185, Dubna, 2002, (in Russian) 4. www.Srf.fr.machine.groups.insertion.devices.Codes /Radia/RadiaTitle.html 5. http://trackpore.com/ МОДЕЛИРОВАНИЕ И ФОРМИРОВАНИЕ МАГНИТНОГО ПОЛЯ ЦИКЛОТРОНА ТЯЖЕЛЫХ ИОНОВ Ю.Г. Аленицкий, Н.Л. Заплатин, С.А. Костромин, Л.М. Онищенко, Е.В. Самсонов, А.Ф. Чеснов Циклотрон для ускорения тяжелых ионов спроектирован и изготовлен в Лаборатории Ядерных Проблем им. В.П. Джелепова ОИЯИ. Основные параметры магнитной системы циклотрона получены на основании расчетов по аналитическим формулам, при условии равномерного намагничивания объёма ферромагнетика, а также по двухмерной программе с использованием сеточной методики (FEMM). Для выбора формы сек- торных шимм была изготовлена модель магнитной системы в масштабе 1:2,5. Приведены основные пара- метры магнитной системы и результаты моделирования и формирования магнитного поля циклотрона. МОДЕЛЮВАННЯ І ФОРМУВАННЯ МАГНІТНОГО ПОЛЯ ЦИКЛОТРОНА ВАЖКИХ ІОНІВ Ю.Г. Аленицький, Н.Л. Заплатин, С.А. Костромин, Л.М. Онищенко, Є.В. Самсонов, А.Ф. Чеснов 80 Циклотрон для прискорення важких іонів спроектований і виготовлений у Лабораторії Ядерних Проблем ім. В.П. Джелепова ОІЯД. Основні параметри магнітної системи циклотрона отримані на підставі розрахунків по аналітичних формулах, за умови рівномірного намагнічування об'єму ферромагнетика, а також по двомірній програмі з використанням сіткової методики (FEMM). Для вибору форми секторних шимм була виготовлена модель магнітної системи в масштабі 1:2,5. Приведено основні параметри магнітної системи і результати моделювання і формування магнітного поля циклотрона. ___________________________________________________________ PROBLEMS OF ATOMIC SIENCE AND TECHNOLOGY. 2004. № 2. Series: Nuclear Physics Investigations (43), p.78-80.81 4. ConclusionS References МОДЕЛИРОВАНИЕ И ФОРМИРОВАНИЕ МАГНИТНОГО ПОЛЯ ЦИКЛОТРОНА ТЯЖЕЛЫХ ИОНОВ МОДЕЛЮВАННЯ І ФОРМУВАННЯ МАГНІТНОГО ПОЛЯ ЦИКЛОТРОНА ВАЖКИХ ІОНІВ