Radiation performances of a high current deuteron linac channel

The results of numerical simulation of spatial and time performances of the radiation field, which is produced by the induced activity in high-current deuteron linac elements, are given. Наведено результати чисельного моделювання просторових і часових характеристик радіаційного поля, що створюєтьс...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Вопросы атомной науки и техники
Дата:2004
Автори: Demchenko, P.O., Gussev, Ye.V., Shulika, M.G., Sotnikov, V.V., Voronko, V.A.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2004
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/79391
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Radiation performances of a high current deuteron linac channel / P.O. Demchenko, Ye.V. Gussev, M.G. Shulika, V.V. Sotnikov, V.A. Voronko // Вопросы атомной науки и техники. — 2004. — № 2. — С. 183-185. — Бібліогр.: 12 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-79391
record_format dspace
spelling Demchenko, P.O.
Gussev, Ye.V.
Shulika, M.G.
Sotnikov, V.V.
Voronko, V.A.
2015-03-31T19:22:06Z
2015-03-31T19:22:06Z
2004
Radiation performances of a high current deuteron linac channel / P.O. Demchenko, Ye.V. Gussev, M.G. Shulika, V.V. Sotnikov, V.A. Voronko // Вопросы атомной науки и техники. — 2004. — № 2. — С. 183-185. — Бібліогр.: 12 назв. — англ.
1562-6016
PACS: 29.17.+w, 29.27.-a
https://nasplib.isofts.kiev.ua/handle/123456789/79391
The results of numerical simulation of spatial and time performances of the radiation field, which is produced by the induced activity in high-current deuteron linac elements, are given.
Наведено результати чисельного моделювання просторових і часових характеристик радіаційного поля, що створюється наведеною активністю елементів сильнострумового прискорювача дейтронів.
Приведены результаты численного моделирования пространственных и временных характеристик радиационного поля, создаваемого наведенной активностью в элементах сильноточного линейного ускорителя дейтронов.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Применение ускоренных пучков
Radiation performances of a high current deuteron linac channel
Радіаційні характеристики каналу сильнострумового прискорювача дейтронів
Радиационные характеристики канала сильноточного линейного ускорителя дейтронов
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Radiation performances of a high current deuteron linac channel
spellingShingle Radiation performances of a high current deuteron linac channel
Demchenko, P.O.
Gussev, Ye.V.
Shulika, M.G.
Sotnikov, V.V.
Voronko, V.A.
Применение ускоренных пучков
title_short Radiation performances of a high current deuteron linac channel
title_full Radiation performances of a high current deuteron linac channel
title_fullStr Radiation performances of a high current deuteron linac channel
title_full_unstemmed Radiation performances of a high current deuteron linac channel
title_sort radiation performances of a high current deuteron linac channel
author Demchenko, P.O.
Gussev, Ye.V.
Shulika, M.G.
Sotnikov, V.V.
Voronko, V.A.
author_facet Demchenko, P.O.
Gussev, Ye.V.
Shulika, M.G.
Sotnikov, V.V.
Voronko, V.A.
topic Применение ускоренных пучков
topic_facet Применение ускоренных пучков
publishDate 2004
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Радіаційні характеристики каналу сильнострумового прискорювача дейтронів
Радиационные характеристики канала сильноточного линейного ускорителя дейтронов
description The results of numerical simulation of spatial and time performances of the radiation field, which is produced by the induced activity in high-current deuteron linac elements, are given. Наведено результати чисельного моделювання просторових і часових характеристик радіаційного поля, що створюється наведеною активністю елементів сильнострумового прискорювача дейтронів. Приведены результаты численного моделирования пространственных и временных характеристик радиационного поля, создаваемого наведенной активностью в элементах сильноточного линейного ускорителя дейтронов.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/79391
citation_txt Radiation performances of a high current deuteron linac channel / P.O. Demchenko, Ye.V. Gussev, M.G. Shulika, V.V. Sotnikov, V.A. Voronko // Вопросы атомной науки и техники. — 2004. — № 2. — С. 183-185. — Бібліогр.: 12 назв. — англ.
work_keys_str_mv AT demchenkopo radiationperformancesofahighcurrentdeuteronlinacchannel
AT gussevyev radiationperformancesofahighcurrentdeuteronlinacchannel
AT shulikamg radiationperformancesofahighcurrentdeuteronlinacchannel
AT sotnikovvv radiationperformancesofahighcurrentdeuteronlinacchannel
AT voronkova radiationperformancesofahighcurrentdeuteronlinacchannel
AT demchenkopo radíacíiníharakteristikikanalusilʹnostrumovogopriskorûvačadeitronív
AT gussevyev radíacíiníharakteristikikanalusilʹnostrumovogopriskorûvačadeitronív
AT shulikamg radíacíiníharakteristikikanalusilʹnostrumovogopriskorûvačadeitronív
AT sotnikovvv radíacíiníharakteristikikanalusilʹnostrumovogopriskorûvačadeitronív
AT voronkova radíacíiníharakteristikikanalusilʹnostrumovogopriskorûvačadeitronív
AT demchenkopo radiacionnyeharakteristikikanalasilʹnotočnogolineinogouskoritelâdeitronov
AT gussevyev radiacionnyeharakteristikikanalasilʹnotočnogolineinogouskoritelâdeitronov
AT shulikamg radiacionnyeharakteristikikanalasilʹnotočnogolineinogouskoritelâdeitronov
AT sotnikovvv radiacionnyeharakteristikikanalasilʹnotočnogolineinogouskoritelâdeitronov
AT voronkova radiacionnyeharakteristikikanalasilʹnotočnogolineinogouskoritelâdeitronov
first_indexed 2025-11-25T20:39:25Z
last_indexed 2025-11-25T20:39:25Z
_version_ 1850525540597891072
fulltext RADIATION PERFORMANCES OF A HIGH CURRENT DEUTERON LINAC CHANNEL P.O. Demchenko, Ye.V. Gussev, M.G. Shulika, V.V. Sotnikov, V.A. Voronko National Science Center "Kharkov Institute of Physics and Technology", Institute of Plasma Electronics and New Methods of Acceleration, Kharkov, Ukraine E-mail: demchenko@kipt.kharkov.ua The results of numerical simulation of spatial and time performances of the radiation field, which is produced by the induced activity in high-current deuteron linac elements, are given. PACS: 29.17.+w, 29.27.-a 1. INTRODUCTION One of ion accelerator applications is production of radioisotopes used in medicine, biology, and industry. About 90% of radiological diagnostic examinations in medicine are based on the usage of technetium-99m rа- dionuclide, which is generated as a result of decay of a parent radioisotope (generator) of molybdenum-99. The basic method of 99Mo production is the irradiation of high-enriched uranium-235 targets by neutrons in a nu- clear reactor, and the subsequent chemical 99Mo extrac- tion from high radioactive uranium fission products [1]. To exclude the problems with usage of nuclear reac- tors [1], the alternative methods for producing 99Mo-99mTс have been offered, which are based on an ap- plication both electron accelerators [1,2] and ion ones [3,4]. In particular, for production of 99Mo in commer- cial amount in a paper [4] it was offered to use a high- current deuteron linac with the output energy of W=14 MeV and average current of I=1 mA. If the accel- erator operation time factor is 70%, the total 99Mo pro- duction has to be about 1000 Ci/yr, when thin foils from natural molybdenum are used as targets. The essential accelerator performance is its radioac- tive purity that is needed for the accelerator mainte- nance. As the radiation purity criterion it is considered that the equivalent dose rate at a distance of 1 m from an accelerator axis should not exceed permissible dose rate Kp in 1 hour after the accelerator switch off (radiation cooling time) and after its long-term operation (activa- tion time) [5]. In Ukraine for the personal, in correspon- dence with the recommendation ICRP (International Commission on Radiological Protection), the annual dose limit is Dp=20 mZv. As the personal work time is tp=1700 h/yr that corresponds to the permissible dose rate of Kp=11.2 µZv/h [6]. The purpose of the present work is the simulation of radiation field produced by induced activity in high-cur- rent deuteron linac elements for different activation and cooling times and finding on this basis of beam current losses dI/dz along the accelerating channel satisfying to radiation purity requirements (z is a longitudinal coordi- nate along the accelerator). 2. THE INDUCED ACTIVITY GENERATION The proposed deuteron linac [4] consists of an initial section with radio frequency quadrupole focusing (RFQ) of length 4.7 m and output deuteron energy of W1=2 MeV, and two Н-cavity sections with the modi- fied alternative phase focusing (MAPF), which lengths are 3.14 m and 3.8 m, and the output energies of W2=6.4 MeV and W3=14 MeV respectively. Between sections the magnetic quadrupole lenses are situated for matching of beam phase space characteristics with the sectional performances. The total accelerator length is 14 m. The deuteron energy W1 of the RFQ-section is taken below than the threshold of activation reactions. Therefore the beam losses in the section are not limited by the purity requirements. The accelerating channel of MAPF1 and MAPF2 sections represents a set of copper drift tubes with aper- ture radii varying from 1 cm at MAPF1 inlet up to 2.9 cm at MAPF2 output. The drift tubes are mounted in a copper cylindrical cavity with the diameter of 40 cm, and the wall thickness of 1 mm. Every MAPF section is situated in a cylindrical vacuum liner of 12Х18Н10Т stainless steel with 89 cm in diameter and the wall thickness of 10 mm. The linac activation is caused by nuclear reactions, which arise when accelerated deuterons are bombarding the drift tube surfaces. Accelerator activation processes would be divided in 3 groups. 1. Deuteron activation of drift tube surfaces as a re- sult of reactions with nuclei of natural copper iso- topes of 63,65Cu. The generated rаdionuclides dis- tributed in thin layer of l≤0.3 mm which is less than the path length in copper of deuterons with energy of W3=14 MeV. 2. Activation of drift tube volume by the secondary fast neutrons, which result from 63,65Cu (d, xn)-channels of nuclear reactions, when the deuterons are bombarding the copper drift tubes. 3. Activation of the vacuum liner by secondary fast neutrons, which were not absorbed by the copper drift tubes. Activation of the cavity walls by fast secondary neu- trons would not be taken into account owing to the small wall thickness. For definition of nuclear reaction channels and their cross-sections for deuterons in copper drift tubes, and the secondary neutrons in drift tubes and in the liner, and also γ-rays energies, which are emitted by rаdionu- clide decay, decay constants, and γ-ray quantum yields were used both the published data [7,9-11] and evaluat- ed neutron data ENDF/B-VI and experimental nuclear data EXFOR libraries of Brookhaven National Labora- tory of USA. The isotope abundance ratios of copper ___________________________________________________________ PROBLEMS OF ATOMIC SIENCE AND TECHNOLOGY. 2004. № 2. Series: Nuclear Physics Investigations (43), p.183-185. 183 mailto:demchenko@kipt.kharkov.ua and multicomponent alloy of the liner have been deter- mined using Ref. [8]. The accelerating section model, which was used for calculations of induced activity dose rate, is shown in Fig.1. It was supposed that the linear density of deuteron beam losses dI/dz is a constant along the accel- erating channel. Since the drift tube diameters are essen- tially less than the distance from a channel element dz0 to a view point P(r,z), Fig.1, it is possible to consider the source of γ-rays, emitted by the i- rаdionuclide de- cay in the drift tubes as linear one with linear activity Ach(z). The linear activity Ach(z) is the function of z-coor- dinate, owing to monotonous deuteron energy growth along the channel. It was also supposed, that the activity uniformly dis- tributed over the liner azimuth, and linear activity of the liner ALi(z) depends only on the longitudinal z-coordi- nate. As γ–rays are emitted isotropically by a rаdionuclide of the i-kind, and if the radiation absorption is neglected in drift tubes and the liner, then the dose rate in P(r z) point, produced by activations of drift tubes of Kchi(r,z) and the liner of KLi(r,z) may be presented as [12]: ∫ +− Γ= L chi iich rzz A zrK dzz 0 22 0 00 )( )( ),( δ , (1) ∫ −++−+− Γ= δ L Li iLi RrRrzzzz zA zrK dz 0 22 0 22 0 22 0 4 0 00 2 )()()()( )( ),( , (2) where Γδ i is the air kerma constant for the i-radionuclide [12], L is the accelerating section length. The integrand in (2) is the dose rate produced by a liner elementary ring of R0 radius and dz0 length, Fig.1. The total dose rate K(r,z) is the sum of partial dose rates produced by all i-radioisotopes, generated in drift tubes and the liner: ( ) ( ) ( )∑ += i Lichi zrKzrKzrK ,,, . (3) The linear activity A(d) chi(z), generated by the drift tube deuteron bombarding, is given by the expression: ( ) ( )( )[ ] )exp()exp(//)()( ciaiii d chi ttdzdIWBzA λ−λ−−λ= 1 , (4) where Bi(W) is the i-rаdionuclide yield due to deuteron reactions with copper [10], W=W(z) is the deuteron en- ergy, λi is the i-rаdionuclide decay constant [9], ta is the activation time, tc is the radiation cooling time. To define the activation of drift tubes ( )zA n chi )( and the liner ( )zA n Li )( by the secondary neutrons it is neces- sary to know the distribution of neutron source strength Sn(z) (n/s m) along the accelerator. If one considers that the neutron source is linear one and is located along the system axis, then the source strength Sn(z) is: ( ) ( )∑ λ= i iin WBipdzdIzS /)/( , (5) where the summing is made over all Bi(W) yields for re- actions of 63,65Cu(d,n) and 63,65Cu(d,2n); pi=1 or 2 ac- cordingly for (d,n) or (d,2n) reactions. Then the drift tubes linear activity ( )zA n chi )( will be given as: ( ) [ ] )exp()exp()()( ciai i sciinn chi ttdzS A NzA λ−λ−− λ ρ ησ= 10 , (6) where N0 is the Avogadro number, A is the copper mass number, ρ is the copper density, ηi is the abundance ra- tio of the i-kind isotope in copper, σi is the activation cross-section of this isotope by neutrons, dsc is the mean neutron scattering length in copper. Since the neutron source strength Sn(z) is known, it is possible to calculate the liner linear activity of ( )zA n Li )( , produced by the secondary neutron irradiation. For that the total neutron flux through the liner elemen- tary ring, Fig.1, irradiated by the linear neutron source Sn(z) of L length, was calculated. The neutron activation cross-sections σi(En) are functions of neutron energy En. In the present work the energy distribution of the fast neutrons, generated in Cu(d,xn) reactions, was not examined. For linac activa- tion calculations the maximal σi values for the neutron energy range of 0,1≤En≤20 МэВ have been used (upper estimation). The integrals (1) and (2) had been taken nu- merically. 3. RESULTS OF SIMULATION The dose rate map of the radiation field, produced by induced activity of the linac in tc=1 h after its switch off, and for the activation time ta=1 yr, is shown in Fig. 2. The equivalent dose rate isolines K(r, z)=const are normalized (%) to the dose rate Kc in the critical point Pc(1 m; 13,65 m), located 1 m apart from the ac- celerator axis (z=0 corresponds to the RFQ-section in- put). In this point the dose rate Kc is maximal one. As it follows from Fig.2, for the constant beam losses dI/dz along the channel, the maximal dose rate area is at the end of the accelerator. It is caused by the growth of rа- dionuclide yields Bi(W) with increasing of deuteron en- ergy W(z) and opening additional channels of radioiso- tope generation. The spatial distribution of reduced dose rate K(r,z)/Kc, Fig.2, does not depend on the beam linear losses dI/dz, and is the important radiation characteris- r 0 z R0 z0 P(r,z) 1 2 dz0 r z L Fig.1. Model of accelerating section for simulation of induced activity dose rate: 1- accelerating channel of drift tubes, 2- vacuum liner 184 tics of the accelerator. The absolute value of dose rate K(r,z,ta,tc) depends on the times of activation ta, and cooling tc, and is proportional to the beam losses dI/dz. In Fig.3 the dose rates Kc in the critical point Pc, re- duced to the beam losses dI/dz are given as the function of cooling time tc, and for different activation time ta. For the short activation time ta the equilibrium con- centration is achieved for short-lived rаdionuclides. Therefore the activity decreases quickly after the accel- erator switch off (ta=1 h), Fig.3. For long activation time the essential contributions in the total activity give the long-lived rаdionuclides, which activity decreases slow- ly with growth of cooling time tc. On the base of the dependences, Figs.2 and 3, the equivalent dose rate would be calculated in any space point, and for different activation ta and cooling tc times, and beam losses dI/dz. In particular, from Figs. 2 and 3 it follows that the dose rate Kc in the critical point Pc will not exceed the permissible dose rate Kp=11.2 µZv/h through tc=1 hour after the accelerator switch off, if the beam losses dI/dz≤3.7⋅10-8 A/m, and long continuous linac operation (ta≥1 yr). In conclusion it needs to mark, that the main contri- bution to the dose rate gives the copper drift tube activa- tion by deuterons. In Fig.4 the dose rate distributions along the line, which is parallel to the accelerator axis and crosses the critical point Pc, (line AB, Fig.2) are shown, which are produced by: drift tube deuteron acti- vation - 1, drift tube neutron activation - 2, liner neutron activation - 3 and the total dose rate - 4. As it follows from Fig. 4, the contribution to the total dose rate of ac- celerator activation by the secondary neutrons does not exceed 17 %. REFERENCES 1. R.G. Benett, I.D. Christian, D.A. Petti et al. A Sys- tem of 99mTc Production Based on Distributed Elec- tron Accelerators and Thermal Separation // Nucle- ar Technology. 1999, v. 126, p.102–121. 2. N.P. Dikiy, A.N. Dovbnya, V.L. Uvarov. Develop- ment of New Electron Irradiation Based Technolo- gy for Technetium-99m Production. // Proceedings of the Sixth European Particle Accelerator Confer- ence. 1998, p.2389–2391, Stockholm, Sweden. 3. P.A. Demchenko, V.A. Voronko, V.Ya. Migalenya et al. Application of Compact Linear Accelerators for Medicine // Problems of Atomic Science and Technology. Series: Nuclear Physics Investigations (31,32). 1997, №4,5, p.168–170 (in Russian). 4. P.A. Demchenko, Ye.V. Gussev, M.G. Shulika. A Channel of High Current Deuteron Linac with Low Radiation Losses // Problems of Atomic Science and Technology. Series: Nuclear Physics Investiga- tions (41). 2003, №2,p.138–143. 5. Linear Ion Accelerators/ Ed. by B.P. Murin. v.2. M.: “Atomizdat”, 1978, p.20 (in Russian). 6. Normy Radiotchijnoi Bezpeki Ukraine (NRBU-97). Kiyv, 1997 (In Ukraine). 7. Catalog of Gamma Rays from Radioactive Decay // Atomic Data and Nuclear Data Tables. 1983, v.29, №2, p.190-406. 8. Tables of Isotopes. 8-th Edition/ Edited by R.B. Fire- stone, John Willey & Sons, Inc., 1999. 9. ICRP Publication 38. Rаdionuclide Transmutation, Energy and Intensity of Emissions. New York: Pergamon Press, 1982. 10. P.P. Dmitriev. Vyhod radionuklidov v reaktsiyah s protonami, dejtronami, al'fa-chastitsami i geliem 3. Spravochnik. M.: Energoatomizdat, 1985, p.270 (in Russian). 11. V.M. Bychkov et al. Sechenija porogovyh reaktsij, vyzvannyh nejtronami. Spravochnik. M.: Energoat- omizdat, 1985, p.216 (in Russian). ___________________________________________________________ PROBLEMS OF ATOMIC SIENCE AND TECHNOLOGY. 2004. № 2. Series: Nuclear Physics Investigations (43), p.183-185. Fig. 2. Dose rate map of activated deuteron linac for ta=1 year and tc=1 hour Fig. 3. Dependence of equivalent dose rate reduced to beam losses on cooling time tc and for different activation time ta in the critical point Pc Fig. 4. Dose rate distributions along accelerator apart 1 m from axis: 1 – drift tube deuteron activation, 2 – drift tube neutron activation, 3 - liner neutron activation, 4 – total 185 12. V.F. Kozlov. Spravochnik po radiatsionnoj be- zopasnosti. M.: Energoatomizdat, 1987, p.191 (in Russian). РАДИАЦИОННЫЕ ХАРАКТЕРИСТИКИ КАНАЛА СИЛЬНОТОЧНОГО ЛИНЕЙНОГО УСКОРИ- ТЕЛЯ ДЕЙТРОНОВ В.А. Воронко, Е.В. Гусев, П.А. Демченко, В.В. Сотников, Н.Г. Шулика Приведены результаты численного моделирования пространственных и временных характеристик радиа- ционного поля, создаваемого наведенной активностью в элементах сильноточного линейного ускорителя дейтронов. РАДІАЦІЙНІ ХАРАКТЕРИСТИКИ КАНАЛУ СИЛЬНОСТРУМОВОГО ПРИСКОРЮВАЧА ДЕЙ- ТРОНІВ В.О. Воронко, Є.В. Гусєв, П.О. Демченко, В.В. Сотніков, М.Г. Шуліка Наведено результати чисельного моделювання просторових і часових характеристик радіаційного поля, що створюється наведеною активністю елементів сильнострумового прискорювача дейтронів. 186 В.А. Воронко, Е.В. Гусев, П.А. Демченко, В.В. Сотников, Н.Г. Шулика В.О. Воронко, Є.В. Гусєв, П.О. Демченко, В.В. Сотніков, М.Г. Шуліка