Transition amplitude for free massless particle
The propagator for massless particle of arbitrary spin is represented as BFV-BRST path integral in index spinor formalism. The classical formulation of the theory is investigated and it is carried out its Hamiltonization procedure. The structure functions are obtained. The BRST-charge of the model i...
Gespeichert in:
| Veröffentlicht in: | Вопросы атомной науки и техники |
|---|---|
| Datum: | 2001 |
| Hauptverfasser: | , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2001
|
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/79423 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Transition amplitude for free massless particle / V.G. Zima, S.A. Fedoruk // Вопросы атомной науки и техники. — 2001. — № 6. — С. 53-59. — Бібліогр.: 8 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-79423 |
|---|---|
| record_format |
dspace |
| spelling |
Zima, V.G. Fedoruk, S.A. 2015-04-01T19:27:44Z 2015-04-01T19:27:44Z 2001 Transition amplitude for free massless particle / V.G. Zima, S.A. Fedoruk // Вопросы атомной науки и техники. — 2001. — № 6. — С. 53-59. — Бібліогр.: 8 назв. — англ. 1562-6016 PACS: 0460G, 0370 https://nasplib.isofts.kiev.ua/handle/123456789/79423 The propagator for massless particle of arbitrary spin is represented as BFV-BRST path integral in index spinor formalism. The classical formulation of the theory is investigated and it is carried out its Hamiltonization procedure. The structure functions are obtained. The BRST-charge of the model is calculated and it is shown, that it has the first rank. The expression for transition amplitude is transformed to the form of amplitude for a system with only the first class constraints. It is shown, that complexification of some phase variable results in the Gupta-Bleuler formalism. In these frameworks it is considered quantization procedure. This work was supported in part by INTAS Grant INTAS-2000-254 and by the Ukrainian National Found of Fundamental Researches under the Project № 02.07/383. We would like to thank I.A. Bandos, A. Frydryszak, E.A. Ivanov, S.O. Krivonos, J. Lukierski, A.J. Nurmagambetov and D.P. Sorokin for interest to the work and for many useful discussions. en Національний науковий центр «Харківський фізико-технічний інститут» НАН України Вопросы атомной науки и техники Quantum field theory Transition amplitude for free massless particle Амплитуда перехода свободной безмассовой частицы Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Transition amplitude for free massless particle |
| spellingShingle |
Transition amplitude for free massless particle Zima, V.G. Fedoruk, S.A. Quantum field theory |
| title_short |
Transition amplitude for free massless particle |
| title_full |
Transition amplitude for free massless particle |
| title_fullStr |
Transition amplitude for free massless particle |
| title_full_unstemmed |
Transition amplitude for free massless particle |
| title_sort |
transition amplitude for free massless particle |
| author |
Zima, V.G. Fedoruk, S.A. |
| author_facet |
Zima, V.G. Fedoruk, S.A. |
| topic |
Quantum field theory |
| topic_facet |
Quantum field theory |
| publishDate |
2001 |
| language |
English |
| container_title |
Вопросы атомной науки и техники |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| format |
Article |
| title_alt |
Амплитуда перехода свободной безмассовой частицы |
| description |
The propagator for massless particle of arbitrary spin is represented as BFV-BRST path integral in index spinor formalism. The classical formulation of the theory is investigated and it is carried out its Hamiltonization procedure. The structure functions are obtained. The BRST-charge of the model is calculated and it is shown, that it has the first rank. The expression for transition amplitude is transformed to the form of amplitude for a system with only the first class constraints. It is shown, that complexification of some phase variable results in the Gupta-Bleuler formalism. In these frameworks it is considered quantization procedure.
|
| issn |
1562-6016 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/79423 |
| citation_txt |
Transition amplitude for free massless particle / V.G. Zima, S.A. Fedoruk // Вопросы атомной науки и техники. — 2001. — № 6. — С. 53-59. — Бібліогр.: 8 назв. — англ. |
| work_keys_str_mv |
AT zimavg transitionamplitudeforfreemasslessparticle AT fedoruksa transitionamplitudeforfreemasslessparticle AT zimavg amplitudaperehodasvobodnoibezmassovoičasticy AT fedoruksa amplitudaperehodasvobodnoibezmassovoičasticy |
| first_indexed |
2025-12-07T16:10:30Z |
| last_indexed |
2025-12-07T16:10:30Z |
| _version_ |
1850866486180052992 |