Transition amplitude for free massless particle

The propagator for massless particle of arbitrary spin is represented as BFV-BRST path integral in index spinor formalism. The classical formulation of the theory is investigated and it is carried out its Hamiltonization procedure. The structure functions are obtained. The BRST-charge of the model i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Вопросы атомной науки и техники
Datum:2001
Hauptverfasser: Zima, V.G., Fedoruk, S.A.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2001
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/79423
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Transition amplitude for free massless particle / V.G. Zima, S.A. Fedoruk // Вопросы атомной науки и техники. — 2001. — № 6. — С. 53-59. — Бібліогр.: 8 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-79423
record_format dspace
spelling Zima, V.G.
Fedoruk, S.A.
2015-04-01T19:27:44Z
2015-04-01T19:27:44Z
2001
Transition amplitude for free massless particle / V.G. Zima, S.A. Fedoruk // Вопросы атомной науки и техники. — 2001. — № 6. — С. 53-59. — Бібліогр.: 8 назв. — англ.
1562-6016
PACS: 0460G, 0370
https://nasplib.isofts.kiev.ua/handle/123456789/79423
The propagator for massless particle of arbitrary spin is represented as BFV-BRST path integral in index spinor formalism. The classical formulation of the theory is investigated and it is carried out its Hamiltonization procedure. The structure functions are obtained. The BRST-charge of the model is calculated and it is shown, that it has the first rank. The expression for transition amplitude is transformed to the form of amplitude for a system with only the first class constraints. It is shown, that complexification of some phase variable results in the Gupta-Bleuler formalism. In these frameworks it is considered quantization procedure.
This work was supported in part by INTAS Grant INTAS-2000-254 and by the Ukrainian National Found of Fundamental Researches under the Project № 02.07/383. We would like to thank I.A. Bandos, A. Frydryszak, E.A. Ivanov, S.O. Krivonos, J. Lukierski, A.J. Nurmagambetov and D.P. Sorokin for interest to the work and for many useful discussions.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Quantum field theory
Transition amplitude for free massless particle
Амплитуда перехода свободной безмассовой частицы
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Transition amplitude for free massless particle
spellingShingle Transition amplitude for free massless particle
Zima, V.G.
Fedoruk, S.A.
Quantum field theory
title_short Transition amplitude for free massless particle
title_full Transition amplitude for free massless particle
title_fullStr Transition amplitude for free massless particle
title_full_unstemmed Transition amplitude for free massless particle
title_sort transition amplitude for free massless particle
author Zima, V.G.
Fedoruk, S.A.
author_facet Zima, V.G.
Fedoruk, S.A.
topic Quantum field theory
topic_facet Quantum field theory
publishDate 2001
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Амплитуда перехода свободной безмассовой частицы
description The propagator for massless particle of arbitrary spin is represented as BFV-BRST path integral in index spinor formalism. The classical formulation of the theory is investigated and it is carried out its Hamiltonization procedure. The structure functions are obtained. The BRST-charge of the model is calculated and it is shown, that it has the first rank. The expression for transition amplitude is transformed to the form of amplitude for a system with only the first class constraints. It is shown, that complexification of some phase variable results in the Gupta-Bleuler formalism. In these frameworks it is considered quantization procedure.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/79423
citation_txt Transition amplitude for free massless particle / V.G. Zima, S.A. Fedoruk // Вопросы атомной науки и техники. — 2001. — № 6. — С. 53-59. — Бібліогр.: 8 назв. — англ.
work_keys_str_mv AT zimavg transitionamplitudeforfreemasslessparticle
AT fedoruksa transitionamplitudeforfreemasslessparticle
AT zimavg amplitudaperehodasvobodnoibezmassovoičasticy
AT fedoruksa amplitudaperehodasvobodnoibezmassovoičasticy
first_indexed 2025-12-07T16:10:30Z
last_indexed 2025-12-07T16:10:30Z
_version_ 1850866486180052992