Field strength for graded Yang–Mills theory
The graded field strength is defined for osp(2/1;C) non-degenerate gauge algebra. We show that a pair of Grassman odd scalar fields find their place as a constituent part of the graded gauge potential on the equal footing with an ordinary (Grassman even) one-form taking values in the proper Lie suba...
Gespeichert in:
| Veröffentlicht in: | Вопросы атомной науки и техники |
|---|---|
| Datum: | 2001 |
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2001
|
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/79427 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Field strength for graded Yang–Mills theory / K. Ilyenko // Вопросы атомной науки и техники. — 2001. — № 6. — С. 74-75. — Бібліогр.: 8 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-79427 |
|---|---|
| record_format |
dspace |
| spelling |
Ilyenko, K. 2015-04-01T19:34:57Z 2015-04-01T19:34:57Z 2001 Field strength for graded Yang–Mills theory / K. Ilyenko // Вопросы атомной науки и техники. — 2001. — № 6. — С. 74-75. — Бібліогр.: 8 назв. — англ. 1562-6016 PACS: 11.10.Ef, 11.15.-q https://nasplib.isofts.kiev.ua/handle/123456789/79427 The graded field strength is defined for osp(2/1;C) non-degenerate gauge algebra. We show that a pair of Grassman odd scalar fields find their place as a constituent part of the graded gauge potential on the equal footing with an ordinary (Grassman even) one-form taking values in the proper Lie subalgebra, su(2), of the graded Lie algebra. Some possibilities of constructing a meaningful variational principle are discussed. The author would like to thank Yu.P. Stepanovsky and V. Pidstrigach for many helpful discussions. en Національний науковий центр «Харківський фізико-технічний інститут» НАН України Вопросы атомной науки и техники Quantum field theory Field strength for graded Yang–Mills theory Напряженность поля для градуированной теории Янга–Миллза Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Field strength for graded Yang–Mills theory |
| spellingShingle |
Field strength for graded Yang–Mills theory Ilyenko, K. Quantum field theory |
| title_short |
Field strength for graded Yang–Mills theory |
| title_full |
Field strength for graded Yang–Mills theory |
| title_fullStr |
Field strength for graded Yang–Mills theory |
| title_full_unstemmed |
Field strength for graded Yang–Mills theory |
| title_sort |
field strength for graded yang–mills theory |
| author |
Ilyenko, K. |
| author_facet |
Ilyenko, K. |
| topic |
Quantum field theory |
| topic_facet |
Quantum field theory |
| publishDate |
2001 |
| language |
English |
| container_title |
Вопросы атомной науки и техники |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| format |
Article |
| title_alt |
Напряженность поля для градуированной теории Янга–Миллза |
| description |
The graded field strength is defined for osp(2/1;C) non-degenerate gauge algebra. We show that a pair of Grassman odd scalar fields find their place as a constituent part of the graded gauge potential on the equal footing with an ordinary (Grassman even) one-form taking values in the proper Lie subalgebra, su(2), of the graded Lie algebra. Some possibilities of constructing a meaningful variational principle are discussed.
|
| issn |
1562-6016 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/79427 |
| citation_txt |
Field strength for graded Yang–Mills theory / K. Ilyenko // Вопросы атомной науки и техники. — 2001. — № 6. — С. 74-75. — Бібліогр.: 8 назв. — англ. |
| work_keys_str_mv |
AT ilyenkok fieldstrengthforgradedyangmillstheory AT ilyenkok naprâžennostʹpolâdlâgraduirovannoiteoriiângamillza |
| first_indexed |
2025-12-07T15:26:33Z |
| last_indexed |
2025-12-07T15:26:33Z |
| _version_ |
1850863720318631936 |