Langmuir waves excitation by electron beam with the limited cross-section in the near-Eearth electron foreshock

Model of the stripped monoenergetic electron beam with the sharp boundaries based on the results of CLUSTER measurements is proposed for the near-Earth foreshock vicinity. Dispersion equation is obtained and analyzed using numerical methods. Dependency of the equation roots corresponding to kinetic...

Full description

Saved in:
Bibliographic Details
Published in:Вопросы атомной науки и техники
Date:2005
Main Authors: Anisimov, I.O., Krasnosselskikh, V.V., Musatenko, K.S.
Format: Article
Language:English
Published: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2005
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/79779
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Langmuir waves excitation by electron beam with the limited cross-section in the near-Eearth electron foreshock / I.O. Anisimov, V.V. Krasnosselskikh, K.S. Musatenko // Вопросы атомной науки и техники. — 2005. — № 2. — С. 152-154. — Бібліогр.: 2 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-79779
record_format dspace
spelling Anisimov, I.O.
Krasnosselskikh, V.V.
Musatenko, K.S.
2015-04-04T18:35:13Z
2015-04-04T18:35:13Z
2005
Langmuir waves excitation by electron beam with the limited cross-section in the near-Eearth electron foreshock / I.O. Anisimov, V.V. Krasnosselskikh, K.S. Musatenko // Вопросы атомной науки и техники. — 2005. — № 2. — С. 152-154. — Бібліогр.: 2 назв. — англ.
1562-6016
PACS: 94.30.Tz, 52.35.Fp
https://nasplib.isofts.kiev.ua/handle/123456789/79779
Model of the stripped monoenergetic electron beam with the sharp boundaries based on the results of CLUSTER measurements is proposed for the near-Earth foreshock vicinity. Dispersion equation is obtained and analyzed using numerical methods. Dependency of the equation roots corresponding to kinetic mechanism of beam-plasma instability on the model parameters is studied.
Запропоновано модель моноенергетичного стрічкоподібного пучка з різкими границями, яка базується на результатах вимірювань експерименту КЛАСТЕР в області форшоку ударної хвилі Землі. Було отримано дисперсійне співвідношення, яке проаналізовано числовими методами. Вивчені залежності положення коренів, що відповідають кінетичному механізму плазмово-пучкової нестійкості, від параметрів моделі.
Предложена модель моноэнергетического ленточного пучка с резкими границами, которая базируется на результатах измерений эксперимента КЛАСТЕР в области форшока ударной волны Земли. Было получено дисперсионное уравнение и проанализировано числовыми методами. Изучены зависимости положения корней дисперсионного уравнения, соответствующих кинетическому механизму плазменно-пучковой неустойчивости, от параметров модели.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Plasma electronics
Langmuir waves excitation by electron beam with the limited cross-section in the near-Eearth electron foreshock
Випромінювання ленгмюрівських хвиль електронним пучком обмеженого перерізу в області електронного форшоку
Излучение ленгмюровских волн электронным пучком ограниченного сечения в области електронного форшока
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Langmuir waves excitation by electron beam with the limited cross-section in the near-Eearth electron foreshock
spellingShingle Langmuir waves excitation by electron beam with the limited cross-section in the near-Eearth electron foreshock
Anisimov, I.O.
Krasnosselskikh, V.V.
Musatenko, K.S.
Plasma electronics
title_short Langmuir waves excitation by electron beam with the limited cross-section in the near-Eearth electron foreshock
title_full Langmuir waves excitation by electron beam with the limited cross-section in the near-Eearth electron foreshock
title_fullStr Langmuir waves excitation by electron beam with the limited cross-section in the near-Eearth electron foreshock
title_full_unstemmed Langmuir waves excitation by electron beam with the limited cross-section in the near-Eearth electron foreshock
title_sort langmuir waves excitation by electron beam with the limited cross-section in the near-eearth electron foreshock
author Anisimov, I.O.
Krasnosselskikh, V.V.
Musatenko, K.S.
author_facet Anisimov, I.O.
Krasnosselskikh, V.V.
Musatenko, K.S.
topic Plasma electronics
topic_facet Plasma electronics
publishDate 2005
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Випромінювання ленгмюрівських хвиль електронним пучком обмеженого перерізу в області електронного форшоку
Излучение ленгмюровских волн электронным пучком ограниченного сечения в области електронного форшока
description Model of the stripped monoenergetic electron beam with the sharp boundaries based on the results of CLUSTER measurements is proposed for the near-Earth foreshock vicinity. Dispersion equation is obtained and analyzed using numerical methods. Dependency of the equation roots corresponding to kinetic mechanism of beam-plasma instability on the model parameters is studied. Запропоновано модель моноенергетичного стрічкоподібного пучка з різкими границями, яка базується на результатах вимірювань експерименту КЛАСТЕР в області форшоку ударної хвилі Землі. Було отримано дисперсійне співвідношення, яке проаналізовано числовими методами. Вивчені залежності положення коренів, що відповідають кінетичному механізму плазмово-пучкової нестійкості, від параметрів моделі. Предложена модель моноэнергетического ленточного пучка с резкими границами, которая базируется на результатах измерений эксперимента КЛАСТЕР в области форшока ударной волны Земли. Было получено дисперсионное уравнение и проанализировано числовыми методами. Изучены зависимости положения корней дисперсионного уравнения, соответствующих кинетическому механизму плазменно-пучковой неустойчивости, от параметров модели.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/79779
citation_txt Langmuir waves excitation by electron beam with the limited cross-section in the near-Eearth electron foreshock / I.O. Anisimov, V.V. Krasnosselskikh, K.S. Musatenko // Вопросы атомной науки и техники. — 2005. — № 2. — С. 152-154. — Бібліогр.: 2 назв. — англ.
work_keys_str_mv AT anisimovio langmuirwavesexcitationbyelectronbeamwiththelimitedcrosssectionintheneareearthelectronforeshock
AT krasnosselskikhvv langmuirwavesexcitationbyelectronbeamwiththelimitedcrosssectionintheneareearthelectronforeshock
AT musatenkoks langmuirwavesexcitationbyelectronbeamwiththelimitedcrosssectionintheneareearthelectronforeshock
AT anisimovio vipromínûvannâlengmûrívsʹkihhvilʹelektronnimpučkomobmeženogopererízuvoblastíelektronnogoforšoku
AT krasnosselskikhvv vipromínûvannâlengmûrívsʹkihhvilʹelektronnimpučkomobmeženogopererízuvoblastíelektronnogoforšoku
AT musatenkoks vipromínûvannâlengmûrívsʹkihhvilʹelektronnimpučkomobmeženogopererízuvoblastíelektronnogoforšoku
AT anisimovio izlučenielengmûrovskihvolnélektronnympučkomograničennogosečeniâvoblastielektronnogoforšoka
AT krasnosselskikhvv izlučenielengmûrovskihvolnélektronnympučkomograničennogosečeniâvoblastielektronnogoforšoka
AT musatenkoks izlučenielengmûrovskihvolnélektronnympučkomograničennogosečeniâvoblastielektronnogoforšoka
first_indexed 2025-11-27T02:57:06Z
last_indexed 2025-11-27T02:57:06Z
_version_ 1850795668219625472
fulltext LANGMUIR WAVES EXCITATION BY ELECTRON BEAM WITH THE LIMITED CROSS-SECTION IN THE NEAR-EARTH ELECTRON FORE­ SHOCK I.O. Anisimov1, V.V. Krasnosselskikh2, K.S. Musatenko1 1Taras Shevchenko National University of Kyiv, Radio Physics Faculty, 64 Volodymyrs’ka St., 01033, Kyiv, Ukraine, ksm@univ.kiev.ua; 2Laboratoire de Physique et Chimie de l’ Environnement, 3A Avenue de la Recherche Scienti­ fique, 45071 Orleans CEDEX, Orleans, France Model of the stripped monoenergetic electron beam with the sharp boundaries based on the results of CLUSTER measurements is proposed for the near-Earth foreshock vicinity. Dispersion equation is obtained and analyzed using nu­ merical methods. Dependency of the equation roots corresponding to kinetic mechanism of beam-plasma instability on the model parameters is studied. PACS: 94.30.Tz, 52.35.Fp 1. INTRODUCTION Multisatellite measurements that were performed in the international project CLUSTER fixed the electric field oscillations on the border between Earth magnetosphere and foreshock region [1]. Frequencies of these oscilla­ tions correspond to the Langmuir and electron-acoustic waves, respectively. Direct measurements of the electron velocity distribution function indicated the presence of electron beam that had been reflected from the shock front. This beam hypothetically causes excitation of the above-mentioned waves. Measurement results show that specified beam is not solid and can be considered as a system of separated radially restricted beams. Theoretical investigation of the waves’ excitation by such a beam is a purpose of this work. 2. MODEL DESCRIPTION AND DISPER­ SION EQUATION The simplest geometrical model is proposed where the stripped monoenergetic electron beam with the sharp boundaries pierces the warm plasma without magnetic field (Fig.1). Fig.1. Model of the stripped beam piercing plasma Considering all the physical magnitudes having the harmonic temporal dependence, f(t)~exp(-iωt), dielectric permettivity for warm isotropic plasma without beam can be written as: ( ) 2 2 2 2 3 3 2 2 1 13 exp 2 2 pel D D D k ik k k ω ε ω ω πλ λ λ , = − − ж ц − + − .з ч и ш r (1) Here ωpe is an electron plasma frequency, and λD is a De­ bay radius. But taking into consideration the beam intro­ duces the summand to expression (1): ( ) ( ) 2 22 2 2 2 0 0 0 0 0 0 0 0 0 0 B xB zz z k kk v k v δε ωω ω ω й щ к ъ к ъ к ъ≈ .к ъ к ъ− −к ъ− −к ъл ы (2) Here v0 is a beam velocity, kx and kz are the transversal and longitudinal components of the wave vector, and ωB is an electron plasma frequency of the beam. Following dispersion equations can be obtained by solving Poisson expression (div(ε∇ϕ)=0) for infinite plas­ ma and infinite beam: 2 2 2 2 2 2 3 23 2 3 22 2 22 2 1 3 3 31 exp , 2 x z D pe pepe k k k i π λ ω ω ω ω ω ωω ω / ж цж ц з чз ч и ши ш = + = ґ й щж ц к ъз ч− + −ґ з чк ъ−− и шл ы (3) ( ) 4 2 2 2 2 2 32 23 2 2 3 22 2 22 2 0 1 3 3 31 exp . 2 x z D pe B pez pe k k k i k v π λ ω ωω ω ω ω ωω ω ω / ж цж ц з чз ч и ши ш = + = ґ й щж ц к ъз ч− − + −ґ з чк ъ−− − и шл ы (4) Here kx2 is the Langmuir waves’ transversal wavenumber for plasma without beam, kx4 is the transversal wavenum­ ber for infinite beam in plasma, and 2d is a beam width. 152 Problems of Atomic Science and Technology. Series: Plasma Physics (11). 2005. № 2. P. 152-154 In order to find dispersion equation for the beam in plas­ ma boundary conditions for the potential on the beam-plas­ ma border should be written. Potentials are specified as: ( ) ( )( ) ( )1 1 2 2exp exp expm z m x zk x ik x ik zϕ ϕ ϕ= + − ; ( ) ( ) ( ) 3 7 8 2 ( exp exp ) exp m z m x z k x ik x ik z ϕ ϕ ϕ = − + + ; (5) ( ) ( ) ( ) ( ) ( ) 2 3 4 5 4 6 4 ( exp exp exp exp )exp . m z m z m x m x z k x k x ik x ik x ik z ϕ ϕ ϕ ϕ ϕ = + − + + + − Here ϕ1, ϕ2 and ϕ3 are the potentials in the areas 1, 2 and 3, respectively (see Fig.1). Boundary conditions that pro­ vide continuity of the potentials, their derivatives and Laplacians on the beam-plasma border have a form: ( )1 0 x dx ϕ =− ∂ = ∂ , ( )3 0 x dx ϕ = ∂ = ∂ , ( )2 0 x dx ϕ =± ∂ = ∂ , (6) 1 2x d x d ϕ ϕ =− =− = , 2 3 , x d x d ϕ ϕ = = = 1 2 ,x d x dϕ ϕ =− =− ∆ = ∆ 2 3 .x d x dϕ ϕ = = ∆ = ∆ As a result homogeneous equations’ set is obtained. It has a non-trivial solution only in the case of its determi­ nant is equal to zero. Desired dispersion equation found from this condition has a form (see, e.g., [2]): ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ ( ) ( ) ( ) } 2 2 4 2 4 2 2 2 4 4 2 2 2 2 2 4 4 2 2 2 4 4 2 4 , [ cos sin ] cos sin ( ) 0. x z x z x z x z x x z x z x z x x z x x z x x z F k k k k sh k d k d k ik k k k d ch k d ik k k k k k sh k d k d k k k k d ch k d ω = + + + + + ґ й щ+ + −ґ ґл ы + + =ґ r (7) First co-factor in (7) corresponds to the antisymmetric modes and the second one – to the symmetric modes. Each co-factor was also obtained for symmetric and anti­ symmetric modes separately. 3. NUMERICAL SOLUTION OF THE DISPER­ SION EQUATION Equation (7) was solved numerically. Dispersion func­ tion F was studied as a function of real and imaginary parts of frequency. Well defined maximums of the value (–logF) on the plane of complex frequency correspond to the roots of the dispersion equation. They become more acute and unreservedly grow if they are built more accu­ rately. Identification of the waves’ types was performed by investigation of extreme cases of the model. The roots obtained correspond to Langmuir waves (Fig.2a) and beam-plasma modes (Fig.2b). Langmuir waves have symmetrical and antisymmetrical branches. Beam-plasma modes can be of stable and unstable type. The dispersion curve and increment (decrement) depen­ dence on the wave number are plotted on Fig.3a-b, re­ spectively. In the presence of the beam the root corresponding to Langmuir wave in plasma is accompanied by a family of roots with stronger damping. The discreteness of the roots can be explained by the transversal restriction of the beam. In the direction normal to the beam motion stand­ ing waves occur. a b Fig.2. Family of roots corresponding to Langmuir waves (a) and beam-plasma modes (b): ω = ω1+iω2, ωb/ω p=0.01, vb/vTe=4.58, d/λD=50, kzλD=0.24 a b Fig.3. Dispersion dependency of the real (a) and imagi­ nary (b) parts of the frequency for one of the roots near 153 the point of Cherenkov resonance (ω = ω1+iω2,, ωb/ω p=0.006, vb/vTe=4.58, d/λD=30) Investigation shows that maximal increment does not depend on the beam width, but only on its density and ve­ locity. It results from the fact that maximal increment cor­ responds to the purely longitudinal waves propagating along the beam motion. Dependence of the real part of the squared transversal wavenumber in plasma is plotted at Fig.4. Fig.4. Dependence of the squared real part of the transversal wave number: ω =ω1+iω2, ωb/ωp=0.01, vb/vTe=4.58, d/λD=50, kzλD=0.24 One can see that curve is lying in the area of the nega­ tive and positive values and passes zero value in the syn­ chronism point. Magnitude Re(kx2)2 defines en existence of the waves’ excitation from the beam. So, in the posi­ tive values’ area, on the right of the synchronism point, the Langmuir waves’ emission from the beam takes place. On the left of the synchronism point there is an exponen­ tial reducing of the electric field out of the beam. 4. CONCLUSIONS Dispersion equation for the stripped beam with sharp boundaries moving in the warm isotropic plasma was ob­ tained. This equation analysis indicates the presence of two types of waves: Langmuir waves and beam-plasma modes. Langmuir waves have symmetrical and antisym­ metrical families of the roots and beam-plasma modes are of dumping and growing types. Large number of roots is a result of the presence of the preferential direction in the system and transversal limita­ tion of the beam. Due to that in the system standing wave occurs. Maximum increment corresponds to the purely longi­ tudinal waves that is why it does not depend on the transversal dimension of the beam but on its density and velocity. The real part of the squared transversal wave number can be of negative and positive value. In positive values area separate beams in periodical sequence of the beams can interact via the Langmuir waves excitation even if the distance between the beams is relatively large. Contrary, in the negative values area interaction between the beams is minimal and periodical sequence can be considered as a set of the independent beams if the distance between beams is more then specific length of the electric field re­ ducing |kx2|-1. REFERENCES 1. J.Sousek, T.Dudok de Wit, V.Krasnoselskikh, J.Pick­ ett. Statistical properties high frequency electric field oscillations in the foreshock. // Spatio-Temporal Analysis and Multipoint Measurements in Space. Or­ leans, France, 12-16 May 2003. P.33-34. 2. A.F.Aleksandrov, L.S.Bogdankevich, A.A.Rukhadze. Basics of plasma electrodynamics. Moscow: “Vys’shaja shkola”, 1978 (In Russian). ИЗЛУЧЕНИЕ ЛЕНГМЮРОВСКИХ ВОЛН ЭЛЕКТРОННЫМ ПУЧКОМ ОГРАНИЧЕННОГО СЕЧЕНИЯ В ОБЛАСТИ ЕЛЕКТРОННОГО ФОРШОКА И.О. Анисимов, В.В. Красносельских, К.С. Мусатенко Предложена модель моноэнергетического ленточного пучка с резкими границами, которая базируется на ре­ зультатах измерений эксперимента КЛАСТЕР в области форшока ударной волны Земли. Было получено дис­ персионное уравнение и проанализировано числовыми методами. Изучены зависимости положения корней дис­ персионного уравнения, соответствующих кинетическому механизму плазменно-пучковой неустойчивости, от параметров модели. ВИПРОМІНЮВАННЯ ЛЕНГМЮРІВСЬКИХ ХВИЛЬ ЕЛЕКТРОННИМ ПУЧКОМ ОБМЕЖЕНОГО ПЕРЕРІЗУ В ОБЛАСТІ ЕЛЕКТРОННОГО ФОРШОКУ І.О. Анісімов, В.В. Красносельських, К.С. Мусатенко Запропоновано модель моноенергетичного стрічкоподібного пучка з різкими границями, яка базується на ре­ зультатах вимірювань експерименту КЛАСТЕР в області форшоку ударної хвилі Землі. Було отримано дис­ персійне співвідношення, яке проаналізовано числовими методами. Вивчені залежності положення коренів, що відповідають кінетичному механізму плазмово-пучкової нестійкості, від параметрів моделі. 154