Nanotube formation on catalytic surface in plasma discharge

The expression for number of layers of multilayered nanotube, which have been generated during the time of its growth in the plasma discharge, is derived. Отримано вираз для кількості прошарків багатошарової нанотрубки, що встигає сформуватися за час її росту в плазмовому розряді. Получено выражение...

Full description

Saved in:
Bibliographic Details
Published in:Вопросы атомной науки и техники
Date:2005
Main Authors: Maslov, V.I., Tretyakov, V.N., Azarenkov, N.A., Yegorov, A.M., Onishchenko, I.N.
Format: Article
Language:English
Published: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2005
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/79796
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Nanotube formation on catalytic surface in plasma discharge / V.I. Maslov, V.N. Tretyakov, N.A. Azarenkov, A.M. Yegorov, I.N. Onishchenko // Вопросы атомной науки и техники. — 2005. — № 2. — С. 188-190. — Бібліогр.: 2 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-79796
record_format dspace
spelling Maslov, V.I.
Tretyakov, V.N.
Azarenkov, N.A.
Yegorov, A.M.
Onishchenko, I.N.
2015-04-04T19:45:20Z
2015-04-04T19:45:20Z
2005
Nanotube formation on catalytic surface in plasma discharge / V.I. Maslov, V.N. Tretyakov, N.A. Azarenkov, A.M. Yegorov, I.N. Onishchenko // Вопросы атомной науки и техники. — 2005. — № 2. — С. 188-190. — Бібліогр.: 2 назв. — англ.
1562-6016
PACS Ref: 52.27.Lw
https://nasplib.isofts.kiev.ua/handle/123456789/79796
The expression for number of layers of multilayered nanotube, which have been generated during the time of its growth in the plasma discharge, is derived.
Отримано вираз для кількості прошарків багатошарової нанотрубки, що встигає сформуватися за час її росту в плазмовому розряді.
Получено выражение для количества слоев многослойной нанотрубки, которое успевает сформироваться за время ее роста в плазменном разряде.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Low temperature plasma and plasma technologies
Nanotube formation on catalytic surface in plasma discharge
Формування нанотрубок на каталітичній поверхні в плазмовому розряді
Формирование нанотрубок на каталитической поверхности в плазменном разряде
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Nanotube formation on catalytic surface in plasma discharge
spellingShingle Nanotube formation on catalytic surface in plasma discharge
Maslov, V.I.
Tretyakov, V.N.
Azarenkov, N.A.
Yegorov, A.M.
Onishchenko, I.N.
Low temperature plasma and plasma technologies
title_short Nanotube formation on catalytic surface in plasma discharge
title_full Nanotube formation on catalytic surface in plasma discharge
title_fullStr Nanotube formation on catalytic surface in plasma discharge
title_full_unstemmed Nanotube formation on catalytic surface in plasma discharge
title_sort nanotube formation on catalytic surface in plasma discharge
author Maslov, V.I.
Tretyakov, V.N.
Azarenkov, N.A.
Yegorov, A.M.
Onishchenko, I.N.
author_facet Maslov, V.I.
Tretyakov, V.N.
Azarenkov, N.A.
Yegorov, A.M.
Onishchenko, I.N.
topic Low temperature plasma and plasma technologies
topic_facet Low temperature plasma and plasma technologies
publishDate 2005
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Формування нанотрубок на каталітичній поверхні в плазмовому розряді
Формирование нанотрубок на каталитической поверхности в плазменном разряде
description The expression for number of layers of multilayered nanotube, which have been generated during the time of its growth in the plasma discharge, is derived. Отримано вираз для кількості прошарків багатошарової нанотрубки, що встигає сформуватися за час її росту в плазмовому розряді. Получено выражение для количества слоев многослойной нанотрубки, которое успевает сформироваться за время ее роста в плазменном разряде.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/79796
citation_txt Nanotube formation on catalytic surface in plasma discharge / V.I. Maslov, V.N. Tretyakov, N.A. Azarenkov, A.M. Yegorov, I.N. Onishchenko // Вопросы атомной науки и техники. — 2005. — № 2. — С. 188-190. — Бібліогр.: 2 назв. — англ.
work_keys_str_mv AT maslovvi nanotubeformationoncatalyticsurfaceinplasmadischarge
AT tretyakovvn nanotubeformationoncatalyticsurfaceinplasmadischarge
AT azarenkovna nanotubeformationoncatalyticsurfaceinplasmadischarge
AT yegorovam nanotubeformationoncatalyticsurfaceinplasmadischarge
AT onishchenkoin nanotubeformationoncatalyticsurfaceinplasmadischarge
AT maslovvi formuvannânanotruboknakatalítičníipoverhnívplazmovomurozrâdí
AT tretyakovvn formuvannânanotruboknakatalítičníipoverhnívplazmovomurozrâdí
AT azarenkovna formuvannânanotruboknakatalítičníipoverhnívplazmovomurozrâdí
AT yegorovam formuvannânanotruboknakatalítičníipoverhnívplazmovomurozrâdí
AT onishchenkoin formuvannânanotruboknakatalítičníipoverhnívplazmovomurozrâdí
AT maslovvi formirovanienanotruboknakatalitičeskoipoverhnostivplazmennomrazrâde
AT tretyakovvn formirovanienanotruboknakatalitičeskoipoverhnostivplazmennomrazrâde
AT azarenkovna formirovanienanotruboknakatalitičeskoipoverhnostivplazmennomrazrâde
AT yegorovam formirovanienanotruboknakatalitičeskoipoverhnostivplazmennomrazrâde
AT onishchenkoin formirovanienanotruboknakatalitičeskoipoverhnostivplazmennomrazrâde
first_indexed 2025-11-24T15:58:12Z
last_indexed 2025-11-24T15:58:12Z
_version_ 1850850032155099136
fulltext NANOTUBE FORMATION ON CATALYTIC SURFACE IN PLASMA DISCHARGE V.I.Maslov, V.N.Tretyakov*, N.A.Azarenkov*, A.M.Egorov, I.N.Onishchenko NSC Kharkov Institute of Physics & Technology, Kharkov, Ukrain, e-mail: vmaslov@kipt.kharkov.ua; *V.N. Karazin Kharkov National University, Kharkov, Ukraine The expression for number of layers of multilayered nanotube, which have been generated during the time of its growth in the plasma discharge, is derived. PACS Ref: 52.27.Lw INTRODUCTION Controllable formation of nanotubes, superlong nanotubes, nanotubes with the necessary properties are the very important and now intensively investigated problems (see, for example, [1, 2]). In this paper the formation of carbon nanotubes in the plasma discharge is considered, when on catalytic surface or surface with defects the nanotubes under effect of the flow of carbon plasma, bombarding the surface, are formed. The universal expression for number of layers of multilayered nanotubes, which have been generated during the time of its growth in the plasma discharge, is derived. THE DESCRIPTION OF NANOTUBE GROWTH Let us consider the nanotube formation, built in the lattice ordered in an electric field of the nanotubes, perpendicular to the catalytic surface. Atoms of carbon, colliding with a lateral surface of a tube and getting in area of a shadow concerning bombarding plasma stream, are quickly cooled, cease to join to nanotubes and "are blown" from a wood of the nanotubes as a result of bombardment by the following atoms of their stream. That is in the region of a shadow, closer to the basis of the nanotube, layers do not grow on of the nanotubes. In other words, layers of nanotube grow on some distance from its head. We name this interval area outside of a shadow and equal to the length of free run ℓfr of carbon atom concerning collisions with nanotube walls. As probabilities of connection of atoms to the top and lateral side are practically identical, speeds of lengthening of a lateral side and length of nanotube are identical. Then during lengthening of nanotube on ℓfr its lateral side also to be extended on ℓfr. Then the amount of nanotube layers is equal Nmax=ℓfr/2πR at spiral nanotube which cross- section, perpendicular to tube axes, represents an untwisted spiral. Here R is the average radius of nanotube. For first layer R it is approximately equal to fullerene radius. Thus ℓfr≈Vz(ℓnan/Vthc ). Here ℓnan is the average distance between nanotubes, Vz is the longitudinal lengthways of the nanotube velocity of carbon ions and atoms, Vthc is the thermal velocity of carbon atoms. If Vz≈Vthc, then ℓfr≈ℓnan. Thus ℓnan≈(nfs)-1/2 . Here nfs is the superficial density of the nanotubes. Nmax≈1, if ℓnan≈2πR. The surface density of the nanotubes σ is derived from that during lengthening with speed V nz of the nanotubes on ℓfr the density of the particle flow nc V z fall on the surface, which with probability ωz engenders nanotubes. Thus, σ= ℓ fr V nz ncV z ωz = nc V z 2ωz V nz V thc  2/3 (1) One mechanism of the growth of the nanotube side is its bombardment by carbon atoms and ions of a plasma flow. The second mechanism of the nanotube growth is the following one. Fallen on the nanotube and sorbed on its surface carbon atom diffuse on its surface up to a growing side, that is growth of a side is reduced to its lengthening with some speed V nz . Now we show, that can arise as spiral, and azimuthally symmetric nanotubes. Also we find quantity of layers of the azimuthally symmetric nanotube. For last carbon atom getting between two next carbon atoms and to form closed cluster, which is the basis of the azimuthally symmetric nanotube, it should overcome a power barrier εз on some tens percents higher than to overcome a barrier εпр for carbon atom to join border open-ended spiral cluster. Probabilities to join to open- ended circular wпр or to close wз it are proportional to wпр~exp(-εпр/T), wз~exp(-εз/T). Hence, the probability to close wз of open-ended circular cluster is less than probability to join wпр to open-ended circular cluster wз<wпр. Thus, the probability of origin of spiral cluster is more than probability of origin of closed circular cluster. However, the spiral nanotube (Figure a) is less favourable from the power point of view, because there are many nonsaturated connections. Hence, if during the nanotube growth the bombardment is intensive the part of the spiral nanotubes decreases due to "heating". Probability to arise new layer - cluster around azimuthally symmetric nanotube is small. It is proportional to nanotube radius. The factor of diffusion of carbon atoms on the nanotube surface is also proportional to nanotube radius. Thus, at formation of multilayered azimuthally symmetric nanotube the distribution on radius r lengths of layers along z-axis has qualitatively kind submitted in Figure b. The number of carbon atoms getting in time unit on the external surface of the nanotube we estimate as follows: 188 Problems of Atomic Science and Technology. Series: Plasma Physics (11). 2005. № 2. P. 188-190 dNcmax/dt=npvp2πRmaxH Here H is the height of the nanotube, np, Vp are the density and velocity of carbon ions in the flow (plasma) accordingly, 2πRmax is the length of "circle" of an external layer of the nanotube. a b a) Origin spiral nanotube; b)distribution on radius r of lengths of nanotube layers The nanotube growth rate upwards due to carbon atom connection, which are placed on the nanotube surface, to a face edge is determined by the following expression: V|| (1)=dH(1)/dt=(aw0 dN||/dt)/Na (2) Here a is the size of internuclear distance in nanotube structure, w0 is the atom, diffused from the nanotube surface, probability of connection to the edge, dN||/dt is the number of carbon atoms getting in time unit on a face edge, Na is the number of carbon atoms on a face edge. Taking into account that dN||/dt=w||dNcmax/dt (3) and Na=L/a (4) we derive the following expression: dH(1)/dt=(a2w0w||dNcmax/dt)/L (5) Here w|| is the probability of that the carbon atom, which is placed on the nanotube surface, diffuse on the face edge, L is the length of the lateral face edge. With the account (1) the expression (5) has the following kind: dH(1)/dt=(a2w0w||npvp2πRmaxH)/L (6) Now we take into account direct hits of carbon ions from the discharge plasma flow on a face edge of the nanotube: V|| (2)=dH(2)/dt=(aw00 dNc/dt)/Na (7) Here w00 is the probability of connection of a carbon ion to a face edge at direct hit from the plasma flow, dNc/dt is the number of carbon ions getting from the plasma flow on the end face in time unit. It can be estimated as follows: dNc/dt=npvpLΔR (8) Here R is the nanotube "thickness". Then, with the account (4) and (8) the equation (7) can be presented as: dH(2)/dt=a2 w00npvpΔR (9) Then the full growth rate of the face edge is equal V||=dH/dt=dH(1)/dt+dH(2)/dt= =a2npvp(w00ΔR+w0w||2πRmaxH /L) (10) Let us estimate the growth rate of the nanotube surface sideways: Vθ=dL/dt=(aw0dNθ/dt)/Naθ (11) Here dNθ/dt is the number of atoms, diffused from the nanotube surface on the lateral edge in time unit, Naθ is the number of carbon atoms on the lateral edge. In our case dNθ/dt=wθdNcmax/dt=wθnpvp2πRmaxH (12) and Naθ=H/a (13) Then with the account (12) and (13) the equation (11) we present in the following kind: dL/dt=a2w0wθnpvp2πRmax (14) Here wθ is the probability of that the carbon atom, which is placed on the nanotube surface, is diffused on the lateral edge. As a result we have derived the following system of the equations describing the nanotube growth upwards and sideways: dH/dt=a2npvp(w00ΔR+w0w||2πRmaxH /L) (15) dL/dt=a2npvpw0wθ2πRmax (16) It is necessary to take into account, that in system of the equations (15) - (16 three values, namely w||, Rmax and wθ are the functions of variables H and L. The length of an external lateral surface of the nanotube can be found from the assumption that it can be presented as Arhimed’s spiral. Then L=δRφ2/4π (17) Thus, we derive 2πRmax=L(φ)–L(φ-2π)=δR(φ2–(φ-2π)2)/4π= =δR(φ-2π)/2 (18) Here δR is the distance between layers of the nanotube, φ is the angular coordinate. From (17) we obtain dependence φ=φ(L): φ=2(πL/δR)1/2 (19) From here, using (17) and (19), we find 2πRmax=δR((πL/δR)1/2-π) (20) Taking into account, that L>>δR, we have from (20) the following expression: 2πRmax=δR(πL/δR)1/2=(πLδR)1/2 (21) Then the system of the equations (15) - (16) becomes: dH/dt=a2npvp(w00ΔR+w0w||(πδR/L)1/2H ) (22) dL/dt=a2npvpw0wθ(πδRL)1/2 (23) QUANTITY OF LAYERS IN GROWING IN THE DISCHARGE MULTILAYERED NANOTUBE Under a shadow we believe that part of the nanotube surface on which bombarding carbon ions and atoms get only after collision with another nanotube. We believe that on the nanotube surface, located outside of the shadow there appears fast (induced) surface diffusion. We believe that the atom, which is placed on the nanotube surface, diffuses with equal probability in any direction. Therefore on the end face of the nanotube which length is equal 2π R N , the following part of atoms comes 189 z r ωup= 2π R N 2  z sh2π R N  . On the lateral side of the growing nanotube, which length is equal z sh , the following part comes ω¿= z sh z sh2π R N Here Ṅ is the number of carbon atoms, settling on the lateral surface of the nanotube outside of a shadow in time unit: Ṅ=2πRmax zsh noV th ωs R is the average radius of the multilayered nanotube, N is the quantity of layers in multilayered nanotube, Rmax is the radius of the multilayered nanotube. Rmax is possible to express through N and distance between layers in multilayered nanotube Rmax=Nr ℓ . The quasi-stationary density of sorbed carbon atoms ncs is determined by balance of sorption with probability ωs and a leaving with probability ωds ωs no V thс=ωds ncs . Here no is the plasma density. It is necessary to note, that ωds depends on induced effective temperature of sorbed atoms. Speed of lengthening of growing nanotube is equal V II= Ṅ aωo ωup 2π R N /a Here ωo is the probability of carbon atom connection to a growing side or the end face of the nanotube. The growth rate of the lateral side of the nanotube is equal V ¿= Ṅ aωo ω¿ z sh /a V II and V ¿ are connected between themselves by the following ratio V II V ¿ = zsh 2π R N From here we find quantity of layers in multilayered of the nanotube N= z sh 2πr ℓ V ¿ V II The nanotube length, located outside of a shadow, is equal z sh=Rn V IIe V th Here V IIe is the component of the carbon atom velocity, directed perpendicularly to the catalytic surface; Rn=n sn −1 /2 is the distance between nanotubes; nsn is the surface density of the nanotubes. N=Rn 2πr ℓ 2π R N z sh V IIe V th ω¿ ωup = ¿Rn πr ℓ V IIe V th =1 πr ℓnsn V IIe V th Since π R N≈ z sh , the area of cross-section of multilayered nanotube is equal Sup=πRmax 2 =4π R2 . The area of its lateral surface, on which the carbon atoms are sorbed and fastly diffuse due to surface diffusion, is equal Sc=2π R NπR min . Taking into account that R=Nr ℓ /2 , we derive Sc= 4π2 R2 Rmin r ℓ . Thus, we obtain that Sup is not much less Sc , i.e. S c S up = πRmin r ℓ 3 . In the case of azimuthally symmetric nanotube N=ωln  zsh 2πr ℓ V ¿ V II ωln is the probability of origin of a new layer. REFERENCES 1. G.-H.Jeong, R.Hatakeyama, T.Hirata et al. // Proc. of XXV ICPIG. Nagoya, 2001, v.2, p.155. 2. R.Hatakeyama, Y.Abe, H.Ishida et al. // Proc. of XXV ICPIG. Nagoya, 2001, v.2, p.159. ФОРМИРОВАНИЕ НАНОТРУБОК НА КАТАЛИТИЧЕСКОЙ ПОВЕРХНОСТИ В ПЛАЗМЕННОМ РАЗРЯДЕ В.И. Маслов, В.Н. Третьяков, Н.А. Азаренков, А.М. Егоров, И.Н. Онищенко Получено выражение для количества слоев многослойной нанотрубки, которое успевает сформироваться за время ее роста в плазменном разряде. ФОРМУВАННЯ НАНОТРУБОК НА КАТАЛІТИЧНІЙ ПОВЕРХНІ В ПЛАЗМОВОМУ РОЗРЯДІ В.І. Маслов, В.М. Третьяков, М.О. Азаренков, О.М. Єгоров, І.М. Онищенко Отримано вираз для кількості прошарків багатошарової нанотрубки, що встигає сформуватися за час її росту в плазмовому розряді. 190