Proposals for experimental study of wakefield undulator radiation

The possibility of detection of a wake-field undulator radiation generated by short bunches of relativistic charged particles, moving through a periodic rf structure, is estimated. Проведена оценка возможности регистрации кильватерно-полевого ондуляторного излучения, генерируемого короткими сгустка...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Вопросы атомной науки и техники
Datum:2006
1. Verfasser: Opanasenko, A.N.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2006
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/79876
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Proposals for experimental study of wakefield undulator radiation / A.N. Opanasenko // Вопросы атомной науки и техники. — 2006. — № 3. — С. 151-153. — Бібліогр.: 11 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-79876
record_format dspace
spelling Opanasenko, A.N.
2015-04-06T14:49:23Z
2015-04-06T14:49:23Z
2006
Proposals for experimental study of wakefield undulator radiation / A.N. Opanasenko // Вопросы атомной науки и техники. — 2006. — № 3. — С. 151-153. — Бібліогр.: 11 назв. — англ.
1562-6016
PACS: 29.27, 41.60.A, 41.60.B, 41.60.C
https://nasplib.isofts.kiev.ua/handle/123456789/79876
The possibility of detection of a wake-field undulator radiation generated by short bunches of relativistic charged particles, moving through a periodic rf structure, is estimated.
Проведена оценка возможности регистрации кильватерно-полевого ондуляторного излучения, генерируемого короткими сгустками релятивистских заряженных частиц, движущихся в периодической резонансной структуре.
Проведено оцінку можливості реєстрації кільватерно-польового ондуляторного випромінювання, що генерується короткими згустками релятивістських заряджених частинок, що рухаються в періодичній резонансній структурі.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Применение ускорителей в радиационных технологиях
Proposals for experimental study of wakefield undulator radiation
Предложения по экспериментальному исследованию кильватерно-полевого ондуляторного излучения
Пропозиції, що до експериментального дослідження кільватерно- польового ондуляторного випромінювання
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Proposals for experimental study of wakefield undulator radiation
spellingShingle Proposals for experimental study of wakefield undulator radiation
Opanasenko, A.N.
Применение ускорителей в радиационных технологиях
title_short Proposals for experimental study of wakefield undulator radiation
title_full Proposals for experimental study of wakefield undulator radiation
title_fullStr Proposals for experimental study of wakefield undulator radiation
title_full_unstemmed Proposals for experimental study of wakefield undulator radiation
title_sort proposals for experimental study of wakefield undulator radiation
author Opanasenko, A.N.
author_facet Opanasenko, A.N.
topic Применение ускорителей в радиационных технологиях
topic_facet Применение ускорителей в радиационных технологиях
publishDate 2006
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Предложения по экспериментальному исследованию кильватерно-полевого ондуляторного излучения
Пропозиції, що до експериментального дослідження кільватерно- польового ондуляторного випромінювання
description The possibility of detection of a wake-field undulator radiation generated by short bunches of relativistic charged particles, moving through a periodic rf structure, is estimated. Проведена оценка возможности регистрации кильватерно-полевого ондуляторного излучения, генерируемого короткими сгустками релятивистских заряженных частиц, движущихся в периодической резонансной структуре. Проведено оцінку можливості реєстрації кільватерно-польового ондуляторного випромінювання, що генерується короткими згустками релятивістських заряджених частинок, що рухаються в періодичній резонансній структурі.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/79876
citation_txt Proposals for experimental study of wakefield undulator radiation / A.N. Opanasenko // Вопросы атомной науки и техники. — 2006. — № 3. — С. 151-153. — Бібліогр.: 11 назв. — англ.
work_keys_str_mv AT opanasenkoan proposalsforexperimentalstudyofwakefieldundulatorradiation
AT opanasenkoan predloženiâpoéksperimentalʹnomuissledovaniûkilʹvaternopolevogoondulâtornogoizlučeniâ
AT opanasenkoan propozicííŝodoeksperimentalʹnogodoslídžennâkílʹvaternopolʹovogoondulâtornogovipromínûvannâ
first_indexed 2025-11-26T20:09:30Z
last_indexed 2025-11-26T20:09:30Z
_version_ 1850772666377568256
fulltext PROPOSALS FOR EXPERIMENTAL STUDY OF WAKEFIELD UNDULA- TOR RADIATION A.N. Opanasenko NSC KIPT, Kharkiv, Ukraine E-mail: Opanasenko@kipt.kharkov.ua The possibility of detection of a wake-field undulator radiation generated by short bunches of relativistic charged particles, moving through a periodic rf structure, is estimated. PACS: 29.27, 41.60.A, 41.60.B, 41.60.C 1. INTRODUCTION Recent research [1-5] into a novel wake-field undu- lator (WFU) radiation mechanism has specified new po- tential opportunities for generating an ultra-short wave- length light. The mechanism consists in photon emission by a short bunch of relativistic charged particles undu- lating at nonsynchronous harmonics of a wake-field (WF) induced by the bunch moving through a periodic corrugated waveguide without external fields. The basic theoretical results of studies into the WFU radiation in- clude the following. • In a relatively long-wave spectral region of the periodic structure (where diffraction of generated waves is essential) the radiation manifests itself in a coherent interference of the WF and WFU radi- ation. The pure WFU radiation takes place only within the relatively ultra-short wave range, where the wave diffraction of the WFU radiation can be neglected [1, 2]. • The power of the coherent WFU radiation emitted by the bunch of N particles is proportional to N 4 [1]. • The power of the incoherent WFU radiation is proportional to N 3 [2]. • Since the WFU radiation power is proportional to the electron energy squared, it can become com- parable with the WF power or even exceed it [2, 3]. • The creation of the WF undulator with sub-mil- limeter periods may open up the possibilities of generation the hard X-rays employing the relative- ly low electron energies without external alterna- tive fields [4, 5]. On ground of above-mentioned we can conclude that experimental studies into the WFU radiation predicted are of great benefit. The goal of the present paper is to estimate the possibilities of carrying out proof-of-princi- ple experiments on observing the WFU radiation. 2. WFU RADIATION CHARACTERISTICS The WFU radiation has a line spectrum with reso- nant wavelengths ( ) ( )22p D pλ γ≈ , (1) where p =1, 2,… is a non-synchronous spatial harmon- ic’s number, D is the rf structure period, γ is the Lorentz factor (γ>>1). Let (p) be a spectral flux (photons/s) into a small bandwidth ∆ω of the р-th harmonics. Then, by analogy with Ref. [6,7], the spectral-angular flux density emitted non-coherently by the bunch in a forward direction is given by ( ) ( ) ( ) 22 2 p p u aver p d N Nf K d ωα γ ω ∆= Ω F , (2) where Ω is the solid angle, α is the fine-structure con- stant, Nu is the number of the rf structure periods, ( )pK r is the WF undulator parameter [4,5,8], faver is the average bunch repetition frequency, 〈…〉 denotes an averaging. The formula for the full flux of the p-th harmonics in a central cone 22 rπ σ ў∆ Ω = (with an angular rms width ( )1r uNσ γў = ) into a FWHM bandwidth ( ) u p N1≅∆ ωω [7] is very useful for experimental es- timations and given by ( ) ( ) 2 2 p p full averNf Kπ α=F . (3) 2.1. WFU RADIATION FROM AN S-BAND WAVEGUIDE Let us consider the possibilities of detection the WFU radiation from the WF undulator being an axisym- metric disk loaded waveguide (DLW) schematically de- picted in Fig.1. ρ b NuD r b a θ b d D u r b axis bunch d Fig.1. DLW as WF undulator In this figure: a is the aperture radius, D-d is the disk thickness, b is the cell radius, rb is the bunch distance from the DLW axis, ρb is the bunch radius, θ is the max- imum possible angular spread of the bunch. At first we will perform an under-estimation of the full fluxes of the WFU radiation out of both a conven- tional SLAC-type rf section [9] and a STRUM90 section designed and fabricated at the NSC KIPT (Ukraine) [10]. The dimensions of these sections are shown in Ta- ble 1. ____________________________________________________________ PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2006. № 3. Series: Nuclear Physics Investigations (47), p.151-153. 151 mailto:A.Author@ifbd.net Table 1. The DLW parameters DLW D d a b Nu STRUM90 7.1 6.7 1.5 4.1 24 SLAC-type 36 3 1.3…0.1 4.2…4.1 85 Note: the dimensions are given in cm Let us look at the wavelengths of the WFU radiation, obtained at the above-mentioned rf structures, as a func- tion of the electron energy (the dependence is presented in Fig.2). It shows that for the S-band rf structures the electron bunches with the energies not less than 100 MeV are required for generating the well-detectable WFU radiation (below infrared light). 10 100 1 .103 1 .104 1 .105 0.01 0.1 1 10 100 1 .103 1 .104 1 .105 1 .106 STRUM90 (4pi/3) (KIPT) 2pi/3 (SLAC) 770 nm - the upper limit of visible spectrum Electron energy (MeV) W av el en gt h ( an gs tr om ) Fig.2. The wavelength of WF undulator radiation versus electron energy In order to estimate the magnitudes of the photon fluxes emitted by the bunch in the DLW, we have used analytical relations for the WFU parameter derived in Ref.[8] for the wake-fields excited in the lowest pass- band (TM01-type mode). The full fluxes in the central cone into the FWHM bandwidth as functions of the bunch charge are shown in Fig.3. Here we consider the ultra-relativistic single bunches with a 6D phase volume typical for the SLAC beams that follow through the giv- en rf sections at a distance equal rb=0.75a from the axis (see Fig.4) with a repetition rate 120 Hz. It is easy to no- tice that the full flux under-estimated, 104…105 ph/sec, can be achieved at the bunch charge about 10 nC. 0.1 1 10 0.01 0.1 1 10 100 1 .103 1 .104 1 .105 1 .106 STRUM90 (4pi/3) (KIPT) 2pi/3 DLW (SLAC) faver =120 Hz Charge of a bunch ( nC ) Fu ll Fl ux in C en tr al C on e ( ph /s ) Fig.3. The full flux of the WFU radiation in the central cone into the FWHM bandwidth versus bunch charge Let us consider the upper estimation of a beam trans- verse phase dimension required for the experiments. Let us assume that there are none of additional focusing ele- ments along the rf structure, and there is a bunch crossover at the structure half-length. Then, supposing ρ b=2σr and θ=2σθ (where σr and σθ are the rms radius and angular spread of the bunch, respectively), see Fig.1, the maximum normalized rms emittance can be estimated as 22 b r n r r u a r N Dθ σε γ σ σ γ σ − −= = , (4) with the maximum magnitude ( ) 2 ,max , at 4 4 b b n r u a r a r N D ε γ σ − −= = . (5) So, for the STRUM90 section Eq.(5) results in εn,max ≈400 mm·mrad at σr ≈1 mm, whereas for the SLAC sec- tion we have εn,max≈150 mm·mrad at σr≈0.7 mm. In the given section the bunch is moving at rb= 0.75a. 2.2 WFU RADIATION FROM SUB-MM PERI- ODIC WAVEGUIDE Further, we will analyze conditions, under which the WFU radiation emitted by the ultra short bunches ob- tained at the so-called table-top accelerators, could be detected. As an example we consider a photo-injector developed at Eindhoven Technical University [11]. The parameters of the photo-injector are given in Table 2. Table 2. The parameters of TU/E photo-injector Energy 10 MeV Emittance 1 mm mrad Length 100 fs Charge 0.1 nC As follows from Eq.(1), the rf structure periods re- quired for photon generation, by 10 MeV electron bunches, in the visible spectrum that can be detected easily by multiplier phototubes, lie within 0.3…0.6 mm. To obtain the under-estimated value for the photon flux generated at the rf structures with sub-millimeter periods, we have carried out optimization of the rf struc- ture geometry. The mean-square of the WFU parameter modulus [8] was used as an efficiency function. First, we have found an optimal set for the dimensions of the S-band DLW by varying the appropriate sizes. Then, us- ing a scaling approach we have determined the optimal dimensions for the rf structure with the sub-millimeter period required. The optimal DLW dimensions are pre- sented in Table 3. Table 3. The optimal dimensions for the DLW n mode D' d' a' b' 1 4π/3 71.45 39.46 20 41.2 150 4π/3 0.476 0.263 0.133 0.275 200 4π/3 0.357 0.197 0.100 0.206 Note: n=D/D'=d/d'=a/a'=b/b' is the reduction ratio, all the dimensions are given in mm Further, let us compare the photon flux emitted by a single bunch at two optimal rf structures having different reduction ratio n=150 and 200, respectively. We sup- pose that in the each section the bunch moves at r'b=rb/n=0.75a'. The dependences of photon numbers in the central cone into the FWHM bandwidth per bunch transit through the section (see Eq.(3)) on the bunch charge are presented in Fig.4. Fig.4 shows that the single 0.1 nC bunch can emit not less than 44…80 photons per one transit through the 152 sub-mm structures with n=150 and 200; each structure consists only of 10 periods. Substituting the data from Table 3 into Eq.(5), we can obtain the upper-estimations for the normalized emittance ε'n,max≈1.2…0.9 mm·mrad at σ'r ≈8…6 µm corresponding to the structure with n=150 and 200, respectively. As follows from Eq.(5), to rise significantly the normalized emittance and bunch ra- dius it is necessary to increase the transverse dimension of the waveguide in several times. Besides, considerable increase in the WFU radiation flux may be provided by both solving the repetition rate step-up problem and raising the bunch charge in several times. 0.01 0.1 1 100.01 0.1 1 10 100 1 .103 1 .104 1 .105 1 .106 1 .107 1 .108 Scaling - n=200 Scaling - n=150 Charge of a bunch ( nC ) N u m b er o f P h o to n s in C o n e p er S h o rt Fig.4. The photon number of the WFU radiation in the central cone into the FWHM bandwidth emitted by a single bunch versus the bunch charge 3. CONCLUSION Because well-detectable wavelengths are located be- low infrared light, the electron energies not less than 100 MeV are required for observation of the WFU radi- ation from the S-band accelerator structures. The under- estimation of the full flux, 104…105 ph/sec, emitted by the single bunches at a repetition rate 120 Hz from the S-band accelerator structures can be achieved at the bunch charge about 10 nC. For observation of the WFU radiation emitted by the ultra-short electron bunches from the TU/E photo-injec- tor it is necessary to solve the problems of increase in the repetition rate and/or the bunch charge. REFERENCES 1. A. Opanasenko. Radiation by self-oscillating rel- ativistic charged particle moving along periodic structure. Proc. of MMET2002, Kiev, Ukraine. 2002, v.2, p.642-643; 2. A. Opanasenko. Radiation of charged particles in self-wakefield. Proc. of RUPAC2002, Obninsk, Russia. 2002, v.1, p.264-270; 3. A. Opanasenko. Characteristics of undulator-type radiation emitted by bunch of charged particles in wakefield // Problems of Atomic Science and Technol- ogy. Series: Nuclear Physics Investigations. 2004, №2(43), p.138-140. 4. A. Opanasenko. Conception of X-ray Source Based on Compact Wakefield Undulator. Proc. of EPAC 2004, Lucerne, Switzerland. p.2412-2414. 5. A. Opanasenko. Wakefield undulator for gener- ating X-rays. Proc. of RUPAC’04, Dubna, Russia. 2004, p.278-280. 6. I.V. Basarov. Possibilities of Coherent X-ray Production with ERL. ERL 02-05. 2002, p.1-12. 7. K.J. Kim. Characteristics of synchrotron radia- tion. AIP Conf. Proc. 1989, v.189(1), p.565-632. 8. A. Opanasenko. Analytical formulas for alternat- ing wake force of corrugated waveguides // Problems of Atomic Science and Technology. Series: Nuclear Physics Investigations. 2006, №8(46), p.148-150. 9. G.A. Loew and R.B. Neal. Accelerating struc- tures. Linear Accelerator, ed.: by P.M. Lapostolle and A.L. Septier. Amsterdam, 1970. 10. M.I. Ayzatsky, Е.Z. Biller, V.V. Volobuev et al. Accelerating section for short-pulsed of linac opera- tion mode // Problems of Atomic Science and Tech- nology. Series: Nuclear Physics Investigations. 1991, №3(21), p.16-18. 11. G.J.H. Brussaard, M.J. Van der Wiel. Ultra- high Gradient Compact Accelerator Developments. Proc. of EPAC 2004, Lucerne, Switzerland, p.74. ПРЕДЛОЖЕНИЯ ПО ЭКСПЕРИМЕНТАЛЬНОМУ ИССЛЕДОВАНИЮ КИЛЬВАТЕРНО-ПОЛЕВО- ГО ОНДУЛЯТОРНОГО ИЗЛУЧЕНИЯ А.Н.Опанасенко Проведена оценка возможности регистрации кильватерно-полевого ондуляторного излучения, генерируе- мого короткими сгустками релятивистских заряженных частиц, движущихся в периодической резонансной структуре. ПРОПОЗИЦІЇ, ЩО ДО ЕКСПЕРИМЕНТАЛЬНОГО ДОСЛІДЖЕННЯ КІЛЬВАТЕРНО- ПОЛЬОВОГО ОНДУЛЯТОРНОГО ВИПРОМІНЮВАННЯ А.М.Опанасенко Проведено оцінку можливості реєстрації кільватерно-польового ондуляторного випромінювання, що генерується короткими згустками релятивістських заряджених частинок, що рухаються в періодичній резонансній структурі. ____________________________________________________________ PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2006. № 3. Series: Nuclear Physics Investigations (47), p.151-153. 153 1. INTRODUCTION 2. WFU RADIATION CHARACTERISTICS 2.1. WFU radiation from AN S-band waveguide 2.2 WFU radiation from SUB-MM PERIODIC waveguide 3. CONCLUSION REFERENCES ПРЕДЛОЖЕНИЯ ПО ЭКСПЕРИМЕНТАЛЬНОМУ ИССЛЕДОВАНИЮ КИЛЬВАТЕРНО-ПОЛЕВОГО ОНДУЛЯТОРНОГО ИЗЛУЧЕНИЯ Пропозиції, що до експериментального дослідження кільватерно- польового ондуляторного випромінювання