Analytical treatment of the chaotic behaviour of the deterministic pseudolinear map: decay of correlations and stability of periodical systems
It was received the rate of chaotization for pseudolinear mapping. It was shown that the rate of chaotization is proportional to the dimension of the phase space and maximal Lyapunov exponent. It was shown also that the problem of the rate of chaotization is not correct and must be regularized. It w...
Saved in:
| Published in: | Вопросы атомной науки и техники |
|---|---|
| Date: | 2001 |
| Main Authors: | , |
| Format: | Article |
| Language: | English |
| Published: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2001
|
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/79897 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Analytical treatment of the chaotic behaviour of the deterministic pseudolinear map: decay of correlations and stability of periodical systems / V.P. Demutsky, V.M. Rashkovan // Вопросы атомной науки и техники. — 2001. — № 6. — С. 238-244. — Бібліогр.: 16 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-79897 |
|---|---|
| record_format |
dspace |
| spelling |
Demutsky, V.P. Rashkovan, V.M. 2015-04-06T16:38:43Z 2015-04-06T16:38:43Z 2001 Analytical treatment of the chaotic behaviour of the deterministic pseudolinear map: decay of correlations and stability of periodical systems / V.P. Demutsky, V.M. Rashkovan // Вопросы атомной науки и техники. — 2001. — № 6. — С. 238-244. — Бібліогр.: 16 назв. — англ. 1562-6016 PACS: 05.45.Ac https://nasplib.isofts.kiev.ua/handle/123456789/79897 It was received the rate of chaotization for pseudolinear mapping. It was shown that the rate of chaotization is proportional to the dimension of the phase space and maximal Lyapunov exponent. It was shown also that the problem of the rate of chaotization is not correct and must be regularized. It was investigated also the two-dimensional dynamical system stability in the case of two and three step periodical standard maps. The stability conditions were obtained. The analytical expressions of the bounders of stability regions were written. It had been shown that the summary region of stability is expanded, when compared to the case of the one-step map, but the number of stable points decreases. en Національний науковий центр «Харківський фізико-технічний інститут» НАН України Вопросы атомной науки и техники Anomalous diffusion, fractals, and chaos Analytical treatment of the chaotic behaviour of the deterministic pseudolinear map: decay of correlations and stability of periodical systems Analytical treatment of the chaotic behaviour of the deterministic pseudolinear map: decay of correlations and stability of periodical systems Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Analytical treatment of the chaotic behaviour of the deterministic pseudolinear map: decay of correlations and stability of periodical systems |
| spellingShingle |
Analytical treatment of the chaotic behaviour of the deterministic pseudolinear map: decay of correlations and stability of periodical systems Demutsky, V.P. Rashkovan, V.M. Anomalous diffusion, fractals, and chaos |
| title_short |
Analytical treatment of the chaotic behaviour of the deterministic pseudolinear map: decay of correlations and stability of periodical systems |
| title_full |
Analytical treatment of the chaotic behaviour of the deterministic pseudolinear map: decay of correlations and stability of periodical systems |
| title_fullStr |
Analytical treatment of the chaotic behaviour of the deterministic pseudolinear map: decay of correlations and stability of periodical systems |
| title_full_unstemmed |
Analytical treatment of the chaotic behaviour of the deterministic pseudolinear map: decay of correlations and stability of periodical systems |
| title_sort |
analytical treatment of the chaotic behaviour of the deterministic pseudolinear map: decay of correlations and stability of periodical systems |
| author |
Demutsky, V.P. Rashkovan, V.M. |
| author_facet |
Demutsky, V.P. Rashkovan, V.M. |
| topic |
Anomalous diffusion, fractals, and chaos |
| topic_facet |
Anomalous diffusion, fractals, and chaos |
| publishDate |
2001 |
| language |
English |
| container_title |
Вопросы атомной науки и техники |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| format |
Article |
| title_alt |
Analytical treatment of the chaotic behaviour of the deterministic pseudolinear map: decay of correlations and stability of periodical systems |
| description |
It was received the rate of chaotization for pseudolinear mapping. It was shown that the rate of chaotization is proportional to the dimension of the phase space and maximal Lyapunov exponent. It was shown also that the problem of the rate of chaotization is not correct and must be regularized. It was investigated also the two-dimensional dynamical system stability in the case of two and three step periodical standard maps. The stability conditions were obtained. The analytical expressions of the bounders of stability regions were written. It had been shown that the summary region of stability is expanded, when compared to the case of the one-step map, but the number of stable points decreases.
|
| issn |
1562-6016 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/79897 |
| citation_txt |
Analytical treatment of the chaotic behaviour of the deterministic pseudolinear map: decay of correlations and stability of periodical systems / V.P. Demutsky, V.M. Rashkovan // Вопросы атомной науки и техники. — 2001. — № 6. — С. 238-244. — Бібліогр.: 16 назв. — англ. |
| work_keys_str_mv |
AT demutskyvp analyticaltreatmentofthechaoticbehaviourofthedeterministicpseudolinearmapdecayofcorrelationsandstabilityofperiodicalsystems AT rashkovanvm analyticaltreatmentofthechaoticbehaviourofthedeterministicpseudolinearmapdecayofcorrelationsandstabilityofperiodicalsystems |
| first_indexed |
2025-12-07T18:19:43Z |
| last_indexed |
2025-12-07T18:19:43Z |
| _version_ |
1850874615815995392 |