Air-thermal oxidation of zirconium materials

The results of the temperature effect on the process of oxide films formation on the surface of the zirconium materials are given. The changes of the morphology, structure and properties of the oxide films on the zirconium and Zr1%Nb alloy due to exposure of heat treatment in air at 500…800 ºС for...

Full description

Saved in:
Bibliographic Details
Published in:Вопросы атомной науки и техники
Date:2014
Main Authors: Pylypenko, M.M., Drobyshevskaya, A.A., Stadnik, Yu.S., Tantsyura, I.G.
Format: Article
Language:English
Published: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2014
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/79969
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Air-thermal oxidation of zirconium materials / M.M. Pylypenko, A.A. Drobyshevskaya, Yu.S. Stadnik, I.G. Tantsyura // Вопросы атомной науки и техники. — 2014. — № 2. — С. 103-106. — Бібліогр.: 9 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-79969
record_format dspace
spelling Pylypenko, M.M.
Drobyshevskaya, A.A.
Stadnik, Yu.S.
Tantsyura, I.G.
2015-04-09T12:59:29Z
2015-04-09T12:59:29Z
2014
Air-thermal oxidation of zirconium materials / M.M. Pylypenko, A.A. Drobyshevskaya, Yu.S. Stadnik, I.G. Tantsyura // Вопросы атомной науки и техники. — 2014. — № 2. — С. 103-106. — Бібліогр.: 9 назв. — англ.
1562-6016
https://nasplib.isofts.kiev.ua/handle/123456789/79969
669.296
The results of the temperature effect on the process of oxide films formation on the surface of the zirconium materials are given. The changes of the morphology, structure and properties of the oxide films on the zirconium and Zr1%Nb alloy due to exposure of heat treatment in air at 500…800 ºС for a time up to 10 h are analyzed.
Приведены результаты исследований влияния температуры на процесс образования оксидных пленок на поверхности циркониевых материалов. Проанализированы изменения морфологии, структуры и свойств оксидных пленок на цирконии и сплаве Zr1%Nb в результате воздействия термической обработки в воздуш- ной среде при 500…800 ºС в течение 10 ч.
Приведено результати досліджень впливу температури на процес утворення оксидних плівок на поверхні цирконієвих матеріалів. Проаналізовано зміни морфології, структури і властивостей оксидних плівок на цирконії та сплаві Zr1%Nb в результаті впливу термічної обробки в повітряному середовищі при 500…800 ºС протягом 10 год.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Материалы реакторов на тепловых нейтронах
Air-thermal oxidation of zirconium materials
Воздушно-термическое окисление циркониевых материалов
Повітряно-термічне окислення цирконієвих матеріалів
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Air-thermal oxidation of zirconium materials
spellingShingle Air-thermal oxidation of zirconium materials
Pylypenko, M.M.
Drobyshevskaya, A.A.
Stadnik, Yu.S.
Tantsyura, I.G.
Материалы реакторов на тепловых нейтронах
title_short Air-thermal oxidation of zirconium materials
title_full Air-thermal oxidation of zirconium materials
title_fullStr Air-thermal oxidation of zirconium materials
title_full_unstemmed Air-thermal oxidation of zirconium materials
title_sort air-thermal oxidation of zirconium materials
author Pylypenko, M.M.
Drobyshevskaya, A.A.
Stadnik, Yu.S.
Tantsyura, I.G.
author_facet Pylypenko, M.M.
Drobyshevskaya, A.A.
Stadnik, Yu.S.
Tantsyura, I.G.
topic Материалы реакторов на тепловых нейтронах
topic_facet Материалы реакторов на тепловых нейтронах
publishDate 2014
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Воздушно-термическое окисление циркониевых материалов
Повітряно-термічне окислення цирконієвих матеріалів
description The results of the temperature effect on the process of oxide films formation on the surface of the zirconium materials are given. The changes of the morphology, structure and properties of the oxide films on the zirconium and Zr1%Nb alloy due to exposure of heat treatment in air at 500…800 ºС for a time up to 10 h are analyzed. Приведены результаты исследований влияния температуры на процесс образования оксидных пленок на поверхности циркониевых материалов. Проанализированы изменения морфологии, структуры и свойств оксидных пленок на цирконии и сплаве Zr1%Nb в результате воздействия термической обработки в воздуш- ной среде при 500…800 ºС в течение 10 ч. Приведено результати досліджень впливу температури на процес утворення оксидних плівок на поверхні цирконієвих матеріалів. Проаналізовано зміни морфології, структури і властивостей оксидних плівок на цирконії та сплаві Zr1%Nb в результаті впливу термічної обробки в повітряному середовищі при 500…800 ºС протягом 10 год.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/79969
citation_txt Air-thermal oxidation of zirconium materials / M.M. Pylypenko, A.A. Drobyshevskaya, Yu.S. Stadnik, I.G. Tantsyura // Вопросы атомной науки и техники. — 2014. — № 2. — С. 103-106. — Бібліогр.: 9 назв. — англ.
work_keys_str_mv AT pylypenkomm airthermaloxidationofzirconiummaterials
AT drobyshevskayaaa airthermaloxidationofzirconiummaterials
AT stadnikyus airthermaloxidationofzirconiummaterials
AT tantsyuraig airthermaloxidationofzirconiummaterials
AT pylypenkomm vozdušnotermičeskoeokisleniecirkonievyhmaterialov
AT drobyshevskayaaa vozdušnotermičeskoeokisleniecirkonievyhmaterialov
AT stadnikyus vozdušnotermičeskoeokisleniecirkonievyhmaterialov
AT tantsyuraig vozdušnotermičeskoeokisleniecirkonievyhmaterialov
AT pylypenkomm povítrânotermíčneokislennâcirkoníêvihmateríalív
AT drobyshevskayaaa povítrânotermíčneokislennâcirkoníêvihmateríalív
AT stadnikyus povítrânotermíčneokislennâcirkoníêvihmateríalív
AT tantsyuraig povítrânotermíčneokislennâcirkoníêvihmateríalív
first_indexed 2025-11-24T05:51:46Z
last_indexed 2025-11-24T05:51:46Z
_version_ 1850842000996171776
fulltext   ISSN 1562-6016. ВАНТ. 2014. №2(90) 103 UDC 669.296 AIR-THERMAL OXIDATION OF ZIRCONIUM MATERIALS M.M. Pylypenko, A.A. Drobyshevskaya, Yu.S. Stadnik, I.G. Tantsyura National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine E-mail: mpylypenko@kipt.kharkov.ua The results of the temperature effect on the process of oxide films formation on the surface of the zirconium ma- terials are given. The changes of the morphology, structure and properties of the oxide films on the zirconium and Zr1%Nb alloy due to exposure of heat treatment in air at 500…800 ºС for a time up to 10 h are analyzed. INTRODUCTION Modern nuclear power engineering is based on reac- tors in which the most important elements of active zone are made from zirconium alloys. Widespread use of alloys based on zirconium is caused by its good phys- ical and mechanical properties (low thermal neutron capture cross section, high melting temperature, plastic- ity, good corrosion resistance). The corrosion resistance of zirconium alloys is caused by the formation on the surface of a dense oxide film which slows further oxidation. Oxidation of zirco- nium alloys has been studied for a long time and a good understanding of the processes for high temperature conditions in oxidizing environments has been achieved [1-6]. However discussion about the role of various physical processes that affect the growth rate of oxide films and corrosion regimes still continues. Currently established that features of kinetics of cor- rosion zirconium materials explained by changes occur- ring in the oxide films during their growth and degrada- tion. It is important to find correlation between the char- acteristics of the oxide films formed on the alloys dur- ing corrosion and their protective action in order to pre- dict the corrosion behavior of zirconium materials under actual operating conditions. Purpose of work is study the influence of air-thermal oxidation on the growth kinetics, surface structure and mechanical properties of the oxide films formed on the samples of zirconium and Zr1%Nb alloy. MATERIALS AND METHODS As the samples for research the plates of zirconium and Zr1%Nb alloy size 15 × 15 × 1 mm were used. For obtaining a protective oxide film the prepared samples were subjected to air-thermal oxidation in the laboratory electric resistance furnace at temperatures of 500…800 °С with weighting at the beginning and end of the test on the microanalytical scales VLR-200 accu- rate to 0.5 mg after which their mechanical and corro- sion properties were investigated. Holding time of sam- ples in the specified temperature range is from several minutes to 10. Evaluation parameters of corrosion prop- erties of the samples were: characteristic of surface (denseness, color uniformity of oxide films) and  the corrosion rate which determined by the sample weight gain per unit surface over the test period. The surface structure of the obtained films and their elemental composition were investigated by the auto- emission scanning electron microscope JSM-7001F with energy dispersive microanalysis system INCA En- ergy 350. The microstructure of the samples was studied by standard metallographic method on optical micro- scope MMP-4. The thickness of the oxide film on the oxidized samples was determined by fractography im- ages of the fractures using a scanning electron micro- scope FEI Quanta 600 FEG. Microhardness measure- ments were carried out on the device PMT-3 with load of 100 g, the Brinell hardness (HB) was determined with load of 1000 kg on the device TSh-2. To measure the roughness parameters of the surface of samples the portable profilometer-profilograph TR200 production of the company Time Group Inc was used by which the magnitude of Ra (average arithmetic roughness surface according to international standard ISO 4287) was determined. RESULTS AND DISCUSSION To determine the regularities of relief and structure formation of zirconium and Zr1%Nb alloy due to ther- mal influence the electron microscopic studies on the oxidized samples have been made. After oxidation in air at 500 °С for samples of Zr1%Nb alloy a structure typical for a deformed mate- rial is observed. As a result of oxidation at 600 °С solid black oxide film without cracks is appeared (Fig. 1,a). Such morphological structure of the coating indicates a good quality of sample. At 700 °С thickness of the ox- ide film is increased, there are small cracks and whitish layer. At 800 °С inhomogeneous structure with some separation on fragments is formed (see Fig. 1,b). Samples of pure zirconium after oxidation at 500 °С are covered with glossy film of homogeneous structure. At increasing the annealing temperature to 600 °С sig- nificant changes in the external and structural view is not noted. Any defects in the oxide films or their flaking are not observed. The films in this temperature range are firmly engaged with the sample surface. On the plates annealed at 800 °С white oxide film is formed, already cracks with clear boundaries are seen (see Fig. 1,c). It is obvious that a coating with such morphological charac- teristics cannot provide effective protection of the sur- face.   104 ISSN 1562-6016. ВАНТ. 2014. №2(90) а b c Fig. 1. Surface morphology of the Zr1%Nb alloy (а, b) and Zr (c) after oxidation for 8 h at 600 °С (а) and 800 °С (b, c) At complex study of functional oxide coatings on zirconium materials it has been found temperature effect of air-thermal oxidation on morphology and composi- tion of the modified surfaces. At temperature up to 600 °С durable black oxide film of uniform structure is formed on the surface of the zirconium and its alloy. Further increase of temperature to 800 °С leads to an increase in the oxygen content and the oxide film growth (Table). With increasing thickness of the oxide film the mechanical stresses at the border oxide-metal are increased and therefore a sharp change in corrosion resistance is observed [7]. Long-term oxidation times and higher oxidation temperatures violate the coating integrity. Formation of cracks and destruction of the oxide film occurs. Except the temperature and duration of the process [8] also the chemical composition has a significant im- pact on the structure of the oxide layer. Composition of oxide films affects on their mechanical and protective properties since a dense solid oxide film can protect the metal from further oxidation. In the study of the oxida- tion process it was found that for pure zirconium and zirconium doped with niobium onset temperature of cracking of the oxide film is different. After annealing at 500…600 °С all samples were covered with continu- ous glossy film. At 800 °С for Zr1%Nb alloy an inho- mogeneous structure with some separation into frag- ments is formed while for pure zirconium cracks are clearly visible due to the formation of smaller amounts of the tetragonal phase in the oxide layer (see Fig. 1,b,c). Due to the low volume fraction of tetragonal oxide a fracture toughness of the oxide layer becomes much lower therefore the oxide layer is susceptible to microcracks and loses its protective structure [9]. In the structure of Zr1%Nb alloy after oxidation the presence of a significant amount of a light tetragonal phase is observed so the formation of cracks in the oxide layer occurs not as intensively as in the case of pure zirco- nium. The minimum film thickness which is necessary for the protection and stabilization of metal corrosion proc- ess depends on many factors: temperature, chemical composition and structure, the manufacturing process and preparation of the sample surface, etc. Oxidation kinetics of zirconium materials was determined by peri- odic weighing samples. It was found that with increas- ing holding time the weight gain of sample increases and significantly depends on temperature. From the results of studies follows that the oxidation rate of the zirconium materials continuously increases with in- creasing thickness of the film formed. The highest in- tensity of the weight gain of samples occurs at a tem- perature of 800 °С as shown in Table. Corrosion behavior of zirconium materials is deter- mined by properties of the barrier oxide film. The growth of the oxide film under isothermal conditions in the temperature range studied is not subject to any one law and cannot be described by one kinetic equation. At certain temperatures the transition from one to another oxidation law is observed. In the oxidation of zirconium materials there are several stages [3-4]. Growth of the oxide film in the temperature range 500…600 °С  occurs according to a parabolic or cubic law up to oxide thickness of 2…3 μm. The inner part of the film is nonstoichiometric, the outer part is close to the stoichiometric composition. Such oxide film is an effective protective barrier for oxidation. According to a parabolic law a rate of the oxidation process is inversely proportional to the thickness of the oxide film. This law applies when on the metal surface during its oxidation a film which has protective properties is formed, i.e. it is solid and nonporous. With further growth of the oxide film thickness more than 3 μm the growth kinetics is replaced by qua- silinear. At temperatures above 700 °С corrosion rate increases sharply. This oxidation stage is characterized by rapid oxidation and a large number of oxide film defects such as cracks and pores (Fig. 2). Transition from the protective oxide film to the peelable film oc- curs for relatively short time after which zirconium and Zr1%Nb alloy are oxidized with increased rate to com- plete destruction. The research results of oxide films formed on the surface of zirconium samples showed that growth proc- ess of the oxide film thickness depends on the holding time and heating temperature. Furthermore as seen from Fig. 2 at the same temperature of 800 °С thickness of oxide film formed during corrosion on an alloy almost 2 times less than the thickness of the film on pure zirco- nium. This fact is explained by the presence in the alloy of niobium which stabilizes the corrosion resistance of undoped zirconium that is eliminates the adverse effect of small amounts of impurities present in pure zirco- nium [4]. It is known that the doping of zirconium may significantly reduce the oxidation rate after transition [7].   ISSN 1562-6016. ВАНТ. 2014. №2(90) 105 a b c d Fig. 2. Fractography images of the fractures of the samples of zirconium (a, b) and Zr1%Nb alloy (c, d) at 700 °С (a, c) and 800 °С (b, d) Roughness parameter Ra of the oxide film formed at a temperature up to 600 °С is not more than 0.1 μm. When tested of zirconium materials in more severe con- ditions (raised temperature) a thicker oxide film is formed, roughness is increased (see Table). The value of Brinell hardness is increased from 2500 MPa for the initial samples Zr1%Nb alloy to 2770 MPa for all samples after oxidation. The micro- hardness values of the samples after oxidation at differ- ent temperatures of heating and times of annealing are significantly different. The measurement results show that with rising temperature microhardness is increased. The microhardness values for zirconium plates as well as the results of determining the amount of oxygen, weight gain, roughness and thickness of the samples are shown in Table. Oxygen content, weight gain (Δm), roughness (Ra), thickness (h) and microhardness (Hμ) of oxide films formed on zirconium samples Samples Values Zr Zr1%Nb T, °С 600 700 800 600 700 800 t, h 8 10 8 8 10 8 O2, wt.% 22.7 26.2 32 23.13 24.5 26.17 Δm, mg 4.1 43.9 62.9 4.4 15.95 51.7 Ra, μm 0.072 0.270 1.981 0.100 0.632 1.848 h, μm 3.3 12.12 84.18 2.2 17.75 47.75 Hμ, MPa 3720 7340 7880 5190 8240 8350 It should be noted that despite the fact that the corro- sion is the destructive process the formation of the dense oxide films on the surface of zirconium materials may lead to positive effects due to creation of the pro- tective barrier on the path of further degradation of ma- terial. In order to have protective properties the oxide film must fulfill the following requirements: be solid, nonporous, chemically inert to the aggressive environ- ment, have high hardness, wear resistance, adhesion to metal. Thus the choice of optimal temperature and time of oxidation allows to create on the surface of zirconium materials the dense oxide films. The protective oxide film of a certain thickness and perfect structure (no cracks, pores) on the surface of zirconium and alloy Zr1%Nb prevents further penetration of the corrosive   106 ISSN 1562-6016. ВАНТ. 2014. №2(90) environment in the deeper layers and therefore protects the metal from further destruction. CONCLUSIONS It is shown that air-thermal oxidation of zirconium and Zr1%Nb alloy at temperatures above 500 °С results in the formation of the oxide films on surface. Process of growth thickness of the oxide film on zirconium samples depends on the holding time and oxidation temperature. Regimes of air-thermal oxidation of zirconium and its alloy for the production of protective oxide films have been determined. It has been established that at temperature of 500…600 ºС the films characterized by high strength and density are formed. Raising the oxida- tion temperature leads to the formation and growth of cracks and micropores in the structure of the oxide films on the zirconium materials and consequently to reduce their protective properties. REFERENCES 1. B. Cox. Some thoughts on the mechanisms of in- reactor corrosion of zirconium alloys // J. Nucl. Mater. 2005, v. 336, №2-3, p. 331-368. 2. A.K. Shikov, A.D. Nikulin, A.V. Nikulina, et аl. The current state and development prospects of zirco- nium and its alloys and products thereof // Physics and chemistry of materials processing. 2001, № 6, p. 5-14. 3. D. Douglas. Physical metallurgy of zirconium. М.: “Atomizdat”, 1975, 360 p. 4. A.S. Zaymovsky, A.V. Nikulina, N.G. Reshet- nikov. Zirconium alloys in nuclear technology. M.: “Energoatomizdat”, 1994, 453 p. 5. A. Yilmazbayhan, A. Motta, R. Comstock, et al. Structure of zirconium alloy oxides formed in pure wa- ter studied with synchrotron radiation and optical mi- croscopy: relation to corrosion rate // J. Nucl. Mater. 2004, v. 324, №1, p. 6-22. 6. B. Cox, V. Kritsky, C. Lemaignan, et al. Water- Side Corrosion of Zirconium Alloys in Nuclear Power Plants. IAEA-TECDOC-996, 1998. 7. B.G. Parfenov, V.V. Gerasimov, G.I. Venedik- tova. Corrosion of Zirconium and its Alloys. М.: “Atomizdat”, 1967, 260 p. 8. M.M. Pylypenko, R.V. Azhazha, I.G. Tantsyura, D.V. Kovteba, Yu.S. Stadnik. Effect of temperature on the formation process of an oxide film on the surface of Zr1%Nb alloy // Proceedings of the International Con- ference on the Physics of Radiation Phenomena and Radiation Material. Alushta, 2012, p. 241. 9. M.M. Pylypenko. Effect of fluoride on suscepti- bility of the Zr-Nb alloys to high temperature oxidation // PAST. Series “Vacuum, pure metals, superconduc- tors”. 2011, №6(76), p. 18-23. Статья поступила в редакцию 12.02.2014 г. ВОЗДУШНО-ТЕРМИЧЕСКОЕ ОКИСЛЕНИЕ ЦИРКОНИЕВЫХ МАТЕРИАЛОВ Н.Н. Пилипенко, А.А. Дробышевская, Ю.С. Стадник, И.Г. Танцюра Приведены результаты исследований влияния температуры на процесс образования оксидных пленок на поверхности циркониевых материалов. Проанализированы изменения морфологии, структуры и свойств оксидных пленок на цирконии и сплаве Zr1%Nb в результате воздействия термической обработки в воздуш- ной среде при 500…800 ºС в течение 10 ч. ПОВІТРЯНО-ТЕРМІЧНЕ ОКИСЛЕННЯ ЦИРКОНІЄВИХ МАТЕРІАЛІВ М.М. Пилипенко, А.О. Дробишевська, Ю.С. Стаднік, І.Г. Танцюра Приведено результати досліджень впливу температури на процес утворення оксидних плівок на поверхні цирконієвих матеріалів. Проаналізовано зміни морфології, структури і властивостей оксидних плівок на ци- рконії та сплаві Zr1%Nb в результаті впливу термічної обробки в повітряному середовищі при 500…800 ºС протягом 10 год.