Characteristics of ADS target irradiated by 200…400 MeV proton beam

The problems of target choice for compact ADS with reactor thermal power 200…400 MW and 200…400 MeV proton beam are considered. Simulation results of neutron yield from fissile and non-fissile targets are presented and the optimal target sizes are calculated. The principal target design characterist...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Вопросы атомной науки и техники
Datum:2013-04-04
Hauptverfasser: Svistunov, Yu.A., Kudinovich, I.V., Golovkina, A.G., Ovsyannikov, D.A., Bogdanov, A.A., Tanchuk, A.V.
Format: Artikel
Sprache:English
Veröffentlicht: Saint-Petersburg State University, St.-Petersburg, Russia 2013-04-04
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/79981
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Characteristics of ADS target irradiated by 200…400 MeV proton beam / Yu.А. Svistunov, I.V. Kudinovich, А.G. Golovkina, D.A. Ovsyannikov, А.А. Bogdanov, А.V. Tanchuk // Вопросы атомной науки и техники. — 2014. — № 3. — С. 64-69. — Бібліогр.: 22 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-79981
record_format dspace
spelling Svistunov, Yu.A.
Kudinovich, I.V.
Golovkina, A.G.
Ovsyannikov, D.A.
Bogdanov, A.A.
Tanchuk, A.V.
2015-04-09T13:41:20Z
2015-04-09T13:41:20Z
2013-04-04
Characteristics of ADS target irradiated by 200…400 MeV proton beam / Yu.А. Svistunov, I.V. Kudinovich, А.G. Golovkina, D.A. Ovsyannikov, А.А. Bogdanov, А.V. Tanchuk // Вопросы атомной науки и техники. — 2014. — № 3. — С. 64-69. — Бібліогр.: 22 назв. — англ.
1562-6016
PACS: 29.25.Dz
https://nasplib.isofts.kiev.ua/handle/123456789/79981
The problems of target choice for compact ADS with reactor thermal power 200…400 MW and 200…400 MeV proton beam are considered. Simulation results of neutron yield from fissile and non-fissile targets are presented and the optimal target sizes are calculated. The principal target design characteristics and its thermal condition are also considered.
Рассмотрены вопросы выбора мишени для компактной электроядерной установки с мощностью реактора 200…400 МВт и энергией протонов 200…400 МэВ. Представлены результаты моделирования выходов нейтронов из размножающих и неразмножающих мишеней и определены оптимальные размеры мишени. Рассмотрены особенности конструкции мишени и вопросы ее температурного состояния.
Розглянуто питання вибору мішені для компактної електроядерної установки з потужністю реактора 200…400 МВт і енергією протонів 200…400 МеВ. Представлено результати моделювання виходів нейтронів із розмножуючих і нерозмножуючих мішеней та визначені оптимальні розміри мішені. Розглянуто особли-вості конструкції мішені і питання її температурного стану.
The work was partly supported by SPbSU, grant 9.38.673.2013.
en
Saint-Petersburg State University, St.-Petersburg, Russia
Вопросы атомной науки и техники
Теория и техника ускорения частиц
Characteristics of ADS target irradiated by 200…400 MeV proton beam
Характеристики мишени электроядерной установки, облучаемой пучком протонов с энергией 200…400 МэВ
Характеристики мішені електроядерної установки, що опромінюється пучком протонів з енергією 200…400 МеВ
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Characteristics of ADS target irradiated by 200…400 MeV proton beam
spellingShingle Characteristics of ADS target irradiated by 200…400 MeV proton beam
Svistunov, Yu.A.
Kudinovich, I.V.
Golovkina, A.G.
Ovsyannikov, D.A.
Bogdanov, A.A.
Tanchuk, A.V.
Теория и техника ускорения частиц
title_short Characteristics of ADS target irradiated by 200…400 MeV proton beam
title_full Characteristics of ADS target irradiated by 200…400 MeV proton beam
title_fullStr Characteristics of ADS target irradiated by 200…400 MeV proton beam
title_full_unstemmed Characteristics of ADS target irradiated by 200…400 MeV proton beam
title_sort characteristics of ads target irradiated by 200…400 mev proton beam
author Svistunov, Yu.A.
Kudinovich, I.V.
Golovkina, A.G.
Ovsyannikov, D.A.
Bogdanov, A.A.
Tanchuk, A.V.
author_facet Svistunov, Yu.A.
Kudinovich, I.V.
Golovkina, A.G.
Ovsyannikov, D.A.
Bogdanov, A.A.
Tanchuk, A.V.
topic Теория и техника ускорения частиц
topic_facet Теория и техника ускорения частиц
publishDate 2013-04-04
language English
container_title Вопросы атомной науки и техники
publisher Saint-Petersburg State University, St.-Petersburg, Russia
format Article
title_alt Характеристики мишени электроядерной установки, облучаемой пучком протонов с энергией 200…400 МэВ
Характеристики мішені електроядерної установки, що опромінюється пучком протонів з енергією 200…400 МеВ
description The problems of target choice for compact ADS with reactor thermal power 200…400 MW and 200…400 MeV proton beam are considered. Simulation results of neutron yield from fissile and non-fissile targets are presented and the optimal target sizes are calculated. The principal target design characteristics and its thermal condition are also considered. Рассмотрены вопросы выбора мишени для компактной электроядерной установки с мощностью реактора 200…400 МВт и энергией протонов 200…400 МэВ. Представлены результаты моделирования выходов нейтронов из размножающих и неразмножающих мишеней и определены оптимальные размеры мишени. Рассмотрены особенности конструкции мишени и вопросы ее температурного состояния. Розглянуто питання вибору мішені для компактної електроядерної установки з потужністю реактора 200…400 МВт і енергією протонів 200…400 МеВ. Представлено результати моделювання виходів нейтронів із розмножуючих і нерозмножуючих мішеней та визначені оптимальні розміри мішені. Розглянуто особли-вості конструкції мішені і питання її температурного стану.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/79981
citation_txt Characteristics of ADS target irradiated by 200…400 MeV proton beam / Yu.А. Svistunov, I.V. Kudinovich, А.G. Golovkina, D.A. Ovsyannikov, А.А. Bogdanov, А.V. Tanchuk // Вопросы атомной науки и техники. — 2014. — № 3. — С. 64-69. — Бібліогр.: 22 назв. — англ.
work_keys_str_mv AT svistunovyua characteristicsofadstargetirradiatedby200400mevprotonbeam
AT kudinovichiv characteristicsofadstargetirradiatedby200400mevprotonbeam
AT golovkinaag characteristicsofadstargetirradiatedby200400mevprotonbeam
AT ovsyannikovda characteristicsofadstargetirradiatedby200400mevprotonbeam
AT bogdanovaa characteristicsofadstargetirradiatedby200400mevprotonbeam
AT tanchukav characteristicsofadstargetirradiatedby200400mevprotonbeam
AT svistunovyua harakteristikimišeniélektroâdernoiustanovkioblučaemoipučkomprotonovsénergiei200400mév
AT kudinovichiv harakteristikimišeniélektroâdernoiustanovkioblučaemoipučkomprotonovsénergiei200400mév
AT golovkinaag harakteristikimišeniélektroâdernoiustanovkioblučaemoipučkomprotonovsénergiei200400mév
AT ovsyannikovda harakteristikimišeniélektroâdernoiustanovkioblučaemoipučkomprotonovsénergiei200400mév
AT bogdanovaa harakteristikimišeniélektroâdernoiustanovkioblučaemoipučkomprotonovsénergiei200400mév
AT tanchukav harakteristikimišeniélektroâdernoiustanovkioblučaemoipučkomprotonovsénergiei200400mév
AT svistunovyua harakteristikimíšeníelektroâdernoíustanovkiŝoopromínûêtʹsâpučkomprotonívzenergíêû200400mev
AT kudinovichiv harakteristikimíšeníelektroâdernoíustanovkiŝoopromínûêtʹsâpučkomprotonívzenergíêû200400mev
AT golovkinaag harakteristikimíšeníelektroâdernoíustanovkiŝoopromínûêtʹsâpučkomprotonívzenergíêû200400mev
AT ovsyannikovda harakteristikimíšeníelektroâdernoíustanovkiŝoopromínûêtʹsâpučkomprotonívzenergíêû200400mev
AT bogdanovaa harakteristikimíšeníelektroâdernoíustanovkiŝoopromínûêtʹsâpučkomprotonívzenergíêû200400mev
AT tanchukav harakteristikimíšeníelektroâdernoíustanovkiŝoopromínûêtʹsâpučkomprotonívzenergíêû200400mev
first_indexed 2025-11-25T22:42:31Z
last_indexed 2025-11-25T22:42:31Z
_version_ 1850572344903335936
fulltext ISSN 1562-6016. ВАНТ. 2014. №3(91) 64 CHARACTERISTICS OF ADS TARGET IRRADIATED BY 200…400 MeV PROTON BEAM Yu.А. Svistunov1, I.V. Kudinovich1, А.G. Golovkina1, D.A. Ovsyannikov1, А.А. Bogdanov2, А.V. Tanchuk3 1Saint-Petersburg State University, St.-Petersburg, Russia E-mail: svistunov@luts.niiefa.spb.su; golovkina.a@gmail.com; igor_kudinovich@mail.ru; dovs45@mail.ru; 2Krylov State Research Center, St.-Petersburg, Russia E-mail: foyd1@rambler.ru; 3NIIEFA, St.-Petersburg, Russia The problems of target choice for compact ADS with reactor thermal power 200…400 MW and 200…400 MeV proton beam are considered. Simulation results of neutron yield from fissile and non-fissile targets are presented and the optimal target sizes are calculated. The principal target design characteristics and its thermal condition are also considered. PACS: 29.25.Dz INTRODUCTION Combination of high-power neutron sources with systems containing nuclear fuel, or so called hybrid sys- tems, are being researched in various countries [1 - 4]. The neutrons excess in such systems can be used for the most of long-living radionuclides transformation into isotopes with far less decay times. In addition the sub- critical condition in such hybrid systems also provides advantages from safety standpoint in comparison with regular critical nuclear reactors. A proton accelerator combined with a target can possibly be considered as the required neutron source. The development of a hy- brid system requires additional research of all system components (accelerator, target, reactor etc.). Nowadays projects of such hybrid systems are being considered with proton and deuteron beams accelerated mostly up to 1 to 2 GeV (for ex. [5 - 7]). This tendency is explained by the fact that the nuclear waste transmu- tation is considered to be the primary problem, although energy production is also considered. On the other hand, the development of a compact power plant with a ther- mal power output of 200…400 MW, which could be the basis of a safe nuclear power plant or a complex for the transmutation of long-living radioactive isotopes, would also be an interesting idea. Such power plant doesn't require a large accelerator and huge investment and can be created using modern accelerator and reactor tech- nologies. Also accelerator parameters optimization is carried out [8 - 12] in order to improve nowadays accel- erator characteristics. 1. NEUTRON GENERATION IN TARGETS OF DIFFERENT MATERIALS The ADS target should provide the maximum neu- tron yield being irradiated by the charged particles beam. The spallation neutrons intensity is specified by the following expression: ,0 e mI S p= where pI − the accelerator average current; 0m − neu- tron yield (the average number of neutrons generated in the target by one accelerated charged particle); e − the charge of an accelerated particle. The neutron yield depends on the charged particles beam characteristics, target composition and sizes. It should be noted that amount of experimental data on neutron yield from targets irradiated by 200…400 MeV proton beam is much less than for tar- gets irradiated by 0.6…1 GeV proton beams [13]. For neutron yield calculation the Geant 4.10 with enabled ENDF cross-section libraries was used. The verification results of QGSP_BIC_HP library [14] physical models are presented in the Table 1. Table 1 Verification results of Geant physical models library with experimental data [15] № Target diameter D, cm Target length L, cm Target material density, g/cm3 Proton energy Ep, MeV Experiment Geant 4.9.6p. 2 (105) Neutron yield N ±ΔN QGSP_B IC_HP 1 20.4 61 238U / 18.95 470 18.1 0.9 16.9 720 29.1 1.5 30.6 960 40.5 2 41.9 2 10.2 61 Pb / 11.35 470 8.0 0.4 7.4 720 11.8 0.6 12.9 960 16.6 0.8 17.1 3 10 60 Pb / 11.35 317 3,13 0.06 3.9 470 6.4 0.3 7.5 960 16.8 0.5 16.9 4 20.4 61 Pb / 11.35 470 8.7 0.4 8.3 720 13.9 0.7 15.1 960 20.3 1.1 20.8 5 10.2 61 Pb / 11.35 + H20 / 0.9982 540 9.0 0 8.9 720 13.3 0 12.5 960 17.7 0 16.9 As follows from Тable 1 data, for calculation of ADS target irradiated by the 200…400 MeV proton beam the Geant physical models library QGSP_BIC_HP can be used. mailto:svistunov@luts.niiefa.spb.su mailto:golovkina.a@gmail.com mailto:igor_kudinovich@mail.ru ISSN 1562-6016. ВАНТ. 2014. №3(91) 65 The neutron generating targets can conditionally be divided into two categories [16]: non-fissile (performed on the material which doesn’t fission by neutrons) and fissile (performed on the fissile neutron generating ma- terials). In fissile targets the neutron yield is higher than in non-fissile, however the heat generation in them is sig- nificantly higher than in non-fissile targets: the fissile isotopes fission process makes an additional contribu- tion to the sum energy release and neutron generation. For non-fissile ADS targets could be used: • high-melting targets of tungsten, tantalum, capa- ble to carry high local energy releases; • liquid metal (lead and lead-bismuth) targets, in which structural material changes under irradia- tion are absent. For fissile ADS targets uranium based targets with different fuel compositions are considered. In ADS with targets of non-fissile materials the ex- ternal neutron source intensity is specified by the spalla- tion neutrons leakage from the target surface. For small sized targets a significant part of secondary particles that can induce nuclear fissions leave the target. For large sized − radioactive capture of neutrons by the tar- get plays an important role (Fig. 1). Fig. 1. Neutron yield from non-fissile (W, Ta (a); Bi,Pb,Bi+Pb (b)) cylindrical target surface with infinite length in dependence of its radius (Ep= 300 МeV) Because of an anisotropy of non-elastic proton scat- tering the target length should in several times be great- er than its radius, meanwhile the L value has weak in- fluence on neutron yield if the following condition L>D>λin is fulfilled. A great part of neutron leakage comes from the target face from the side of beam fall- ing. So the neutron yield is maximal with some beam entry point deepening [17]. Beam entry point deepening also help to decrease the negative radiation effects on accelerator elements and the beam output facility. The cylindrical targets optimal sizes irradiated by 300 MeV proton beam are presented in the Table 2.The neutron yield of these targets with proton 200…400 МeV is presented in Fig. 2. Table 2 Cylindrical targets optimal sizes. D (cm) – diameter, L (cm) – length, Z (cm) – deepening, N – relative neutron yield (neutron/ proton) in dependence of protons energy Material Ep=300 МeV Dоpt, cm Lоpt, cm Zоpt, cm N, n/p Pb 45.0 75.0 15.0 4.9 Bi 58.0 77.5 17.5 4.7 44.5%Pb- 55.5% Bi 50.0 75.0 15.0 4.7 W 7.0 14.5 1.5 3.6 Ta 7.0 14.3 1.3 3.4 Fig. 2. Neutron yield from the non-fissile cylindrical target surface with optimal sizes (Ep = 200…400 МeV) In ADS with non-fissile targets the initial neutrons born in spallation reactions are multiplied because of the fission process in the target. Calculation results of the total neutrons yield from 238U cylindrical targets of different radiuses are present- ed in Fig. 3. As the Fig. 3 indicates the total neutrons yield reaches the value 13 n/p in uranium target with an optimal radius r = 30 cm (Ep=300 MeV). Fig. 3. The total neutrons yield in fissile cylindrical target (238U) with infinite length in dependence of its radius (Ep= 300 МeV) a b ISSN 1562-6016. ВАНТ. 2014. №3(91) 66 A proton accelerator with the following characteris- tics: Ep = 300 МeV, Ip = 5 mA is proposed to be used for ADS with thermal power 200…400 МW. In this case the neutrons source intensity from tantalum target is S0 ≈ 1017 n/s, and from uranium target – S0 ≈ 4⋅1017 n/s. 2. PRINCIPAL DESIGN CHARACTERISTICS FOR ADS TARGET Two target alternatives for ADS with thermal power 200…400 МW are considered in this paper. The construction with fuel elements is considered as a fissile target (Fig. 4) [18]. Fig. 4. Neutrons generating target: 1, 2, 3 – vessel with channels for coolant; 4 – vacuum ion guide; 5 – irradiated elements; 6, 7 – shells of irradiated element; 8 – fissile material; 9 – coolant channel; 10 – throttle The target shell consists of three coaxial shells. The inner shell is hermetically sealed onto the beam canal. The inner shell also contains the irradiated tubes. Thus, the inner part of the shell, which is connected to the beam canal, is sealed and isolated from the coolant and contains vacuum/evacuated. Heat withdrawal from the target located inside the reactor is fulfilled via reactor coolant (Helium). The outer and middle shells of the target serve as a circulation system for the coolant. The middle shell has holes in its side to which all the irradi- ated tubes of the inner shell are connected individually. Empty spaces between the inner and the middle shell, and the middle and the outer shell form the pressure and draining manifolds for the coolant of the neutron target. Each irradiated element consists of two thin coaxial tubes. Between these tubes lies the neutron producing material. This design of the irradiated elements allows any form of neutron producing material to be used (powder, liquid, tablet etc.) and lowers the requirement for its radiation and thermal resistance. An orifice is installed into the inner tubes of every irradiated element to help maintain a defined flow of the coolant. Rows of irradiated tubes are placed in layers with each layer containing tubes facing one direction. This stiffens the inner shell, which is constantly under external pressure from the coolant. The density and composition of the neutron material may vary from lay- er to layer to help maintain a required rate of neutron generation along the length of the target. The principle design of non-fissile neutron generat- ing target is presented in the Fig. 5. 3. ENERGY RELEASE IN THE ADS TARGET Energy release in the ADS target, situated in the re- actor core is conditioned as straight by irradiation by high-energy charged particles, as by heat generation because of neutron and gamma radiation in the reactor core. Fig. 5. Neutrons generating target design: 1 – beam guid; 2 – the target main array; 3 – tube plate; 4 – protection screens; 5 – pressure header shell; 6 – target flange; 7 – outer shell; 8 – cooling channels; 9 – wire coiling; 10 – tube; 11 – tube core In the general case heat generation in the target in- duced by charged particles beam is specified by charged particles ionization losses (charged particles electro- magnetic interactions with the matter), cascade hadron inelastic interactions (neutrons, protons, π-mesons) with the target matter nucleus, target matter nucleus fission process. In principle, energy release in the target can exceed the energy of the proton beam coming from the accelerator because of energy, released in fission and elementary particles secession from the nucleus. In or- der to evaluate the energy release value in the target irradiated by proton beam in this paper we use some calculation data from [15, 19] and experimental data from [20]. As follows from the data presented in [15] the heat generation power level, released in the target irradiated by proton beam (QP), is connected with beam power NP (with Ep = 400 МeV): for tantalum QP = 0.7 Np; for uranium QP = 1.2 Np, where Np = Ep Ip, МeV. The energy release in the target irradiated by narrow charged particles beam has significant space irregularity ISSN 1562-6016. ВАНТ. 2014. №3(91) 67 qp(r, z). Specific energy release is maximal along the beam entrance line qp0(z), (r= 0, z – coordinate in the target counted from the beam entrance point, сm). In [20] from the experimental data analysis the following expression was obtained: ( ) ( )inpP zqzq λ/43.1exp0 00 −= . The maximal specific energy release 0 0Pq is located in the beam entrance point. Some calculation results are presented in [19], from which it follows that the maxi- mal volume heat intensity 0 0Pq in uranium target, E = 500 МeV and the average proton current density in the beam entrance point of the target 0.01 mА/сm2 reaches the value up to 100 МW/m3. The acceptable heat intensity in the target is conditioned by the maxi- mal allowable target matter temperature, which is de- fined within thermal design. Radiation heat generation value in the target, situat- ed inside the reactor core, is specified the same way as heat generation value in the structural materials of the reactor core [21]. Specific energy release conditioned by gamma ra- diation is calculated using the following formula: ( ) ( ) ( )∫ ⋅Φ= TE a dEErErq γγγγ µ  , , where γΦ is space-energy gamma-radiation flux densi- ty distribution; Taµ – energy of gamma-radiation linear absorption coefficient in the target material. Integral energy release value in the target condi- tioned by gamma radiation is defined by the formula: ( )dVrqQ V ∫=  γγ . Specific energy release, conditioned by neutron slowdown in the target matter is described by this for- mula: ( ) ( ) ( ),fE n S n nE q r E E r E dEξ= Σ Φ∫   , where ξ – neutron average logarithmic energy loss in elastic scattering process; SΣ – macroscopic scattering cross-section; nΦ – space-energy neutron flux density distribution. Integral energy release value conditioned by the neu- tron slowdown process is defined by the formula: ( ) .n n V Q q r dV= ∫  Let us consider the thermal condition of the non- fissile tantalum target (see Fig. 5), irradiated by the pro- ton beam with energy Ep = 400 МeV and average cur- rent Ip=5 mА as an example. Calculations were carried out for ADS based on the gas-cooled reactor with ther- mal power level 200 and 400 МW. The total energy release power level in the tantalum target is about 1.46 МW, though the energy release power level, condi- tioned by protons is about 1.4 МW, energy release pow- er level, conditioned by gamma radiation is about 0.06 МW, also energy release conditioned by the neu- tron slowdown process can be neglected. The distribu- tion of specific energy release power level along the target axis is presented in the Fig. 6 [22]. The target embodiment allows to consider it as a heat generating array of cylindrical shape, penetrated by 463 axial cooling channels. These channels are treated as Fiels-tubes, situated in the triangle lattice (Fig. 7). The target is cooled by the reactor primary coolant circuit, so the gas coolant (Helium) pressure in the tar- get is about Р = 10 МPa, and the temperature in the tar- get entrance point 300°С (before the moment when the coolant reaches the target, it cools structural compo- nentry in the reactor). The target coolant (Helium) tem- perature is assumed to reach 600°С in the output. This fact allows to provide quite high mechanical properties in structural materials, influenced by coolant pressure (degasified channel, bringing particle beam to the tar- get). Fig. 6. Distribution of specific energy release power level along the target axis Fig. 7. A target cell scheme and the central cells cluster, situated over the entrance channel, configuration channels ISSN 1562-6016. ВАНТ. 2014. №3(91) 68 Some statements follow from the target thermal cal- culations performed via ANSYS (Figs. 8, 9): – target material temperature along the coolant cir- cuit doesn’t exceed 900°С; – maximal temperature of target material reaches 2000°С in the target central cell bottom. Fig. 8. Temperature state of the target central cells cluster(outer surface), °С Fig. 9. Temperature distribution in the target bottom element (central cell) CONCLUSIONS Non-fissile materials, made of high-melting metals (Ta or W), can be used as targets for ADS with power level 200…400 МW and the following proton beam characteristics: Ep = 200…400 МeV, Ip=5 mА. The neu- tron generation intensity in such targets can reach S0 ≈ 1017 n/s. Also fissile targets, performed as a fuel elements set, are good as well for ADS purposes. The total neutron generation intensity in them is about S0 ≈ 4·1017 n/s. The work was partly supported by SPbSU, grant 9.38.673.2013. REFERENCES 1. H. Aït Abderrahim, P. Kupschus, Ph. Benoit, et al. MYRRHA, a multipurpose accelerator-driven sys- tem for R&D pre-design study completion // Proc. of 7-th Information Exchange Meeting on Actinide and Fission Product Portioning and Transmutation. Je- ju, Korea. 2002, p. 899-908. 2. J.U. Knebel, H.A. Abderrahim, L. Cinotti, et al. EUROTRANS: European Research Programme for the Transmutation of High Level Nuclear Waste in an Accelerator Driven System // Proc. of 9-th Nu- clear Energy Information Exchange Meeting on Ac- tinide and Fission Products Partitioning & Trans- mutation. Nimes, France. 2006. 3. H.E. Thyebault1, P. Baeten, A. Billebaud, et al. The GUINEVERE Experiment: first PNS measurements in a lead moderated sub-critical fast core // Proc. of International Congress on the Advances in Nuclear Power Plants (ICAPP'12), Chicago. 2012. 4. M.I. Ayzatskiy, B.V. Borts, A.N. Vodin, et al. NSC KIPT neutron source // Problems of Atomic Science and Technology. 2012, № 3, p. 3-9. 5. Y. Kuriyama et al. Status and Development of a proton FFAG Accelerator at KURRI for ADSR Study // Proc. of PAC. New York, NY, USA. 2011, p. 2172-2174. 6. D. De Bruyn et al. Int. Workshop on Technology and Component of Accelerator Driven System, Karls- ruhe. 2010, OECD-NEA (2011), p. 47. 7. D. Vandeplassche and L. Medeiros, Romao Acceler- ator Driven System // Proc. of IPAC, New Orleans, USA. 2012, p. 6-10. 8. Yu.A. Svistunov, Yu.V. Zuev, А.D. Ovsyannikov, D.А. Ovsyannikov. Compact deuteron accelerator de- sign for 1 MeV neutron source // Vestnik St.- Petersburg University. Ser. 10. 2011, iss. 1, p. 49-59 (in Russian). 9. A.D. Ovsyannikov, D.A. Ovsyannikov, S.-L. Chung. Optimization of a radial matching section // Interna- tional Journal of Modern Physics A. 2009, v. 24, №5, p. 952-958. 10. D.A. Ovsyannikov, A.D. Ovsyannikov, I.V. Antropov, V.A. Kozynchenko. BDO-RFQ code and optimiza- tionmodels // Proc. of Physcon. 2005, p. 282-288. 11. D.A. Ovsyannikov, A.D. Ovsyannikov, M.F. Vorogushin, Yu.A. Svistunov, A.P. Durkin. Beam dynamics optimization: models, methods and applications // Nuclear Instruments and Methods in Physics Research. Section A. 2006, v. 558, № 1, p. 11. 12. B. Bondarev, A. Durkin, Y. Ivanov, et al. The LIDOS.RRQ designer development // Proc. of the IEEE Particle Accelerator Conference, Chicago. 2001, p. 2947-2949. 13. A. Krasa, V. Wagner, M. Majerle, et al. Neutron production in a Pb/U-setup irradiated with 0.7…2.5 GeV protons and deuterons // Nuclear In- struments and Methods in Physics Research. Section A. 2010, v. 615, p. 70-77. 14. S. Agostinelli, J. Allison, K. Amako et al. Geant4 – a simulation toolkit // Nuclear Instruments and Methods in Physics Research. Section A. 2003, v. 506, iss. 3, p. 250-303. 15. V.S. Barashenkov. Nucleo-physical Aspects of the Electronuclear Method // Physics of Particles and Nuclei. 1978, v. 9, p. 871. 16. A.G. Golovkina, A.A. Bogdanov, I.V. Kudinovich, et al. Project of Low-Energy Accelerator Driven Power Plant // Proc. of RuPAC. St.-Petersburg, Rus- sia. 2012, p. 224-226. 17. А.G. Golovkina, I.V. Kudinovich, D.A. Ovsyannikov. Power of ADS with low energy accelerator and fis- sionable target // Problems of Atomic Science and Technology. 2013, №4, iss. 86, p. 328-332. ISSN 1562-6016. ВАНТ. 2014. №3(91) 69 18. L.N. Gerasimov, I.V. Kudinovich, Yu.A. Svistunov, V.P. Struev. Small-size accelerator driven nuclear power plant: Feasible technologic failures // Izvesti- ya Akademii Nauk. Energetika. 2005, № 2, p. 3-16, (in Russian). 19. Yu.M. Ado, V.P. Kryuchkov, V.N. Lebedev. Power subcritical nuclear reactor with beam of accelerated protons // Atomnaya Energiya. 1994, v. 77, iss. 4, p. 300-308, (in Russian). 20. V.I. Belyakov-Bodin. Heat deposition in targets bombarded by medium-energy protons // Nuclear Instruments and Methods in Physics Research. Sec- tion A. 1993, v. 335, iss.1-2, p. 30-36. 21. V.E. Glushkov, V.E. Demin, N.N. Ponomarev- Stepnoy, et al. Heat generation in the reactor. М.: „Energoatomizdat”, 1985. 22. L.N. Gerasimov, I.V. Kudinovich, Yu.A. Svistunov. Tantalum neutron producing target // Transactions of Krylov State Research Center. 2005, №22, p. 109- 120. Article received 04.04.2013 ХАРАКТЕРИСТИКИ МИШЕНИ ЭЛЕКТРОЯДЕРНОЙ УСТАНОВКИ, ОБЛУЧАЕМОЙ ПУЧКОМ ПРОТОНОВ С ЭНЕРГИЕЙ 200…400 МэВ Ю.А. Свистунов, И.В. Кудинович, А.Г. Головкина, Д.A. Овсянников, А.А. Богданов, А.В. Танчук Рассмотрены вопросы выбора мишени для компактной электроядерной установки с мощностью реактора 200…400 МВт и энергией протонов 200…400 МэВ. Представлены результаты моделирования выходов нейтронов из размножающих и неразмножающих мишеней и определены оптимальные размеры мишени. Рассмотрены особенности конструкции мишени и вопросы ее температурного состояния. ХАРАКТЕРИСТИКИ МІШЕНІ ЕЛЕКТРОЯДЕРНОЇ УСТАНОВКИ, ЩО ОПРОМІНЮЄТЬСЯ ПУЧКОМ ПРОТОНІВ З ЕНЕРГІЄЮ 200…400 МеВ Ю.А. Свистунов, І.В. Кудинович, А.Г. Головкіна, Д.О. Овсянников, А.А. Богданов, А.В. Танчук Розглянуто питання вибору мішені для компактної електроядерної установки з потужністю реактора 200…400 МВт і енергією протонів 200…400 МеВ. Представлено результати моделювання виходів нейтронів із розмножуючих і нерозмножуючих мішеней та визначені оптимальні розміри мішені. Розглянуто особли- вості конструкції мішені і питання її температурного стану.