Experimental study of characteristics of intense electron beam injector
Application of low voltage electron source requires the use of steep change of on-axis RF field along the buncher for electrons to be bunched and accelerated efficiently. The paper presents the results of studies of the characteristics of the S-band injector based on such buncher. The injector consi...
Збережено в:
| Дата: | 2013 |
|---|---|
| Автори: | , , , , , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2013
|
| Назва видання: | Вопросы атомной науки и техники |
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/79985 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Experimental study of characteristics of intense electron beam injector / M.I. Aizatskyi, I.V. Khodak, V.A. Kushnir, V.V. Mytrochenko, S.A. Perezhogin, D.L. Stepin, V.F. Zhiglo // Вопросы атомной науки и техники. — 2014. — № 3. — С. 70-74. — Бібліогр.: 11 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-79985 |
|---|---|
| record_format |
dspace |
| spelling |
nasplib_isofts_kiev_ua-123456789-799852025-02-09T22:20:34Z Experimental study of characteristics of intense electron beam injector Исследование характеристик инжектора интенсивного пучка электронов Дослідження характеристик інжектора інтенсивного пучка електронів Aizatskyi, M.I. Khodak, I.V. Kushnir, V.A. Mytrochenko, V.V. Perezhogin, S.A. Stepin, D.L. Zhiglo, V.F. Теория и техника ускорения частиц Application of low voltage electron source requires the use of steep change of on-axis RF field along the buncher for electrons to be bunched and accelerated efficiently. The paper presents the results of studies of the characteristics of the S-band injector based on such buncher. The injector consists of the 25 kV diode electron gun with current of 1.5 A, the toroidal cavity prebuncher as well as the three cavity buncher with the coaxial to rectangular waveguide transition for the RF power feeding and the sectional solenoid. The RF tests of the manufactured injector have shown its sufficient reliability and lack of multipactoring. Results of studies of the beam parameters at the injector output correlate well with the calculated data. Применение низковольтных источников электронов требует использования группирующих систем с неоднородным нарастающим СВЧ-полем для эффективной группировки и ускорения электронов. Приведены результаты исследования характеристик инжектора десятисантиметрового диапазона, использующего такую систему. Инжектор состоит из диодной 25 кВ электронной пушки с током до 1,5 А, торроидального резонатора предварительной группировки, трехрезонаторной группирующей системы с коаксиально-волноводным переходом для ввода СВЧ-мощности и секционированного соленоида. Высокочастотные испытания изготовленного инжектора показали достаточную надежность его работы при рабочих режимах уровня мощности СВЧ-питания, достаточную электрическую прочность и отсутствие мультипакции. Результаты исследований параметров пучка на выходе инжектора хорошо соотносятся с расчетными данными. Застосування низьковольтних джерел електронів вимагає використання групуючих систем з неоднорідним наростаючим НВЧ-полем для ефективного групування і прискорення електронів. Приведені результати дослідження характеристик інжектора десятисантиметрового діапазону, що використовує таку систему. Інжектор складається з діодної 25 кВ електронної пушки зі струмом до 1,5 А, тороїдального резонатора попереднього групування, трьохрезонаторної групуючої системи з коаксіально-хвилеводним переходом для вводу НВЧ-потужності і секціонованого соленоїда. Високочастотні випробування виготовленого інжектора показали достатню надійність його роботи при робочих режимах рівня потужності НВЧ-живлення, достатню електричну міцність і відсутність мультипакції. Результати досліджень параметрів пучка на виході інжектора добре співвідносяться з розрахунковими даними. 2013 Article Experimental study of characteristics of intense electron beam injector / M.I. Aizatskyi, I.V. Khodak, V.A. Kushnir, V.V. Mytrochenko, S.A. Perezhogin, D.L. Stepin, V.F. Zhiglo // Вопросы атомной науки и техники. — 2014. — № 3. — С. 70-74. — Бібліогр.: 11 назв. — англ. 1562-6016 PACS: 29.25.Bx, 29.27.-a, 29.27.Ac https://nasplib.isofts.kiev.ua/handle/123456789/79985 en Вопросы атомной науки и техники application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| language |
English |
| topic |
Теория и техника ускорения частиц Теория и техника ускорения частиц |
| spellingShingle |
Теория и техника ускорения частиц Теория и техника ускорения частиц Aizatskyi, M.I. Khodak, I.V. Kushnir, V.A. Mytrochenko, V.V. Perezhogin, S.A. Stepin, D.L. Zhiglo, V.F. Experimental study of characteristics of intense electron beam injector Вопросы атомной науки и техники |
| description |
Application of low voltage electron source requires the use of steep change of on-axis RF field along the buncher for electrons to be bunched and accelerated efficiently. The paper presents the results of studies of the characteristics of the S-band injector based on such buncher. The injector consists of the 25 kV diode electron gun with current of 1.5 A, the toroidal cavity prebuncher as well as the three cavity buncher with the coaxial to rectangular waveguide transition for the RF power feeding and the sectional solenoid. The RF tests of the manufactured injector have shown its sufficient reliability and lack of multipactoring. Results of studies of the beam parameters at the injector output correlate well with the calculated data. |
| format |
Article |
| author |
Aizatskyi, M.I. Khodak, I.V. Kushnir, V.A. Mytrochenko, V.V. Perezhogin, S.A. Stepin, D.L. Zhiglo, V.F. |
| author_facet |
Aizatskyi, M.I. Khodak, I.V. Kushnir, V.A. Mytrochenko, V.V. Perezhogin, S.A. Stepin, D.L. Zhiglo, V.F. |
| author_sort |
Aizatskyi, M.I. |
| title |
Experimental study of characteristics of intense electron beam injector |
| title_short |
Experimental study of characteristics of intense electron beam injector |
| title_full |
Experimental study of characteristics of intense electron beam injector |
| title_fullStr |
Experimental study of characteristics of intense electron beam injector |
| title_full_unstemmed |
Experimental study of characteristics of intense electron beam injector |
| title_sort |
experimental study of characteristics of intense electron beam injector |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| publishDate |
2013 |
| topic_facet |
Теория и техника ускорения частиц |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/79985 |
| citation_txt |
Experimental study of characteristics of intense electron beam injector / M.I. Aizatskyi, I.V. Khodak, V.A. Kushnir, V.V. Mytrochenko, S.A. Perezhogin, D.L. Stepin, V.F. Zhiglo // Вопросы атомной науки и техники. — 2014. — № 3. — С. 70-74. — Бібліогр.: 11 назв. — англ. |
| series |
Вопросы атомной науки и техники |
| work_keys_str_mv |
AT aizatskyimi experimentalstudyofcharacteristicsofintenseelectronbeaminjector AT khodakiv experimentalstudyofcharacteristicsofintenseelectronbeaminjector AT kushnirva experimentalstudyofcharacteristicsofintenseelectronbeaminjector AT mytrochenkovv experimentalstudyofcharacteristicsofintenseelectronbeaminjector AT perezhoginsa experimentalstudyofcharacteristicsofintenseelectronbeaminjector AT stepindl experimentalstudyofcharacteristicsofintenseelectronbeaminjector AT zhiglovf experimentalstudyofcharacteristicsofintenseelectronbeaminjector AT aizatskyimi issledovanieharakteristikinžektoraintensivnogopučkaélektronov AT khodakiv issledovanieharakteristikinžektoraintensivnogopučkaélektronov AT kushnirva issledovanieharakteristikinžektoraintensivnogopučkaélektronov AT mytrochenkovv issledovanieharakteristikinžektoraintensivnogopučkaélektronov AT perezhoginsa issledovanieharakteristikinžektoraintensivnogopučkaélektronov AT stepindl issledovanieharakteristikinžektoraintensivnogopučkaélektronov AT zhiglovf issledovanieharakteristikinžektoraintensivnogopučkaélektronov AT aizatskyimi doslídžennâharakteristikínžektoraíntensivnogopučkaelektronív AT khodakiv doslídžennâharakteristikínžektoraíntensivnogopučkaelektronív AT kushnirva doslídžennâharakteristikínžektoraíntensivnogopučkaelektronív AT mytrochenkovv doslídžennâharakteristikínžektoraíntensivnogopučkaelektronív AT perezhoginsa doslídžennâharakteristikínžektoraíntensivnogopučkaelektronív AT stepindl doslídžennâharakteristikínžektoraíntensivnogopučkaelektronív AT zhiglovf doslídžennâharakteristikínžektoraíntensivnogopučkaelektronív |
| first_indexed |
2025-12-01T09:55:44Z |
| last_indexed |
2025-12-01T09:55:44Z |
| _version_ |
1850299329900707840 |
| fulltext |
ISSN 1562-6016. ВАНТ. 2014. №3(91) 70
EXPERIMENTAL STUDY OF CHARACTERISTICS OF INTENSE
ELECTRON BEAM INJECTOR
M.I. Aizatskyi, I.V. Khodak, V.A. Kushnir, V.V. Mytrochenko, S.A. Perezhogin, D.L. Stepin,
V.F. Zhiglo
National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine
E-mail: khiv@kipt.kharkov.ua
Application of low voltage electron source requires the use of steep change of on-axis RF field along the buncher
for electrons to be bunched and accelerated efficiently. The paper presents the results of studies of the characteristics
of the S-band injector based on such buncher. The injector consists of the 25 kV diode electron gun with current of
1.5 A, the toroidal cavity prebuncher as well as the three cavity buncher with the coaxial to rectangular waveguide
transition for the RF power feeding and the sectional solenoid. The RF tests of the manufactured injector have
shown its sufficient reliability and lack of multipactoring. Results of studies of the beam parameters at the injector
output correlate well with the calculated data.
PACS: 29.25.Bx, 29.27.-a, 29.27.Ac
INTRODUCTION
It is necessary to provide valuable average current of
accelerated electrons for series of nuclear physical in-
vestigations and especially for investigations of methods
of medical radioisotopes production. It is well known
that this task is provided by an electron beam injector
mainly. Powerful linear electron accelerator of the ra-
dio-chemical division in NSC KIPT [1] is equipped by
the injector that requires the electron beam shaping
structure to be upgraded to minimize its spatial-energy
performances. In this context we have studied the new
manufactured injector of intense electron beam that has
to be replaced in the accelerator mentioned above.
The prototype of the investigated injector is the in-
jector system based on five-cavity resonance system
with evanescence oscillations [2]. This system permits
to shape electron beam with required performances but
can be unstable in case of intense electron beam opera-
tion. Therefore the one of the main purposes of the new
injector experimental research is the approving of its
stable operation for the intense electron beam shaping
with current 1 A.
1. INJECTOR PERFORMANCES
Preliminary numerical simulation of the injector oper-
ation stability has shown that the electron bunching is
stable for the pulse beam current up to 2.5 [3]. Injector
parameters and results obtained during self-consistent
beam dynamics simulation according to the method de-
scribed in paper [4] are summarized in the table.
Simulated injector performances
Parameter Value
Electron gun output current, А 1.5
Injector output beam current, А 1.34
Operating frequency, MHz 2797.15
RF power supplying the prebuncher, W 570
RF power supplying the buncher, MW 1.8
RF power pulse duration, µs 2.9
Beam pulse duration, µs 2.4
Normalized emittance, εrms x,y, π⋅mm⋅mrad
(1⋅σ) 12
Beam size (4σx,y), mm 2.8
Bunch phase space (for 70% of particles), 18
degree
Main units of the injector system: solenoid, resonance
cavity system, coaxial-waveguide transition for RF power
feeding has been manufactured during the design-
engineering stage of the injector developing. Sectional
view of the injector is shown on the Fig. 1.
1 2 3
5
6
4
7
Fig. 1. Injector sectional view
The injector assembly consists of the diode electron
gun (1) with 25 kV anode volt age [5], the cylindrical
pre-buncher (2) with coaxial waveguide (7), the buncher
(3) with coaxial-waveguide transition (6) for RF power
supplying and the magnetic system (5) designed as a sec-
tional solenoid with beam position correctors (4) added.
The injector is mounted on the platform that may be
aligned.
The radio-frequency tuning of the injector bunching
system allowed establishing the axial electric field dis-
tribution (Fig. 2) and the axial magnetic field distribu-
tion (Fig. 3) that correlates to the simulated ones respec-
tively. Values of Z axes on Fig. 2 and Fig. 3 correspond
to the same longitudinal axes of symmetry of the injec-
tor. Position Z=0 mm on the Fig. 3 corresponds to the
emitting surface of the cathode.
ISSN 1562-6016. ВАНТ. 2014. №3(91) 71
Fig. 2. Simulated axial electric field distribution (red)
and measured on the operating frequency (green)
Fig. 3. Simulated and measured axial magnetic field
distribution for the excitation current 100 and 300 A
Experimental research of thermal and hydraulic test
operation modes approved the validity of the applied
numerical simulated models and chosen assumptions for
the solenoid design. The results of the tests are present-
ed in the paper [6] more detailed.
2. EXPERIMENTAL SET-UP
The injector parameters and electron beam perfor-
mances at its output have been researched experimental-
ly on the special experimental set-up. The set-up
(Fig. 4) purposed for measuring of beam parameters at
the output of an injector system with electron energy up
to 1 MeV [7].
RF power feeding system of the set-up is based on
the application of an amplifying klystron KIU-12AM
that operates in self-exited generator mode and on the
RF waveguide transmission lines with diagnostic probes
of RF signals. The output of the RF waveguide trans-
mission line is equipped with two directional couplers
(see Fig. 4, pos. 3, 4) purposed to feed the resonance
system of the injector by the corresponding RF power.
With RF power of 10 MW at the klystron output the
couplers permits the prebuncher and buncher to be sup-
plied with RF power of 1 kW and 1 MW respectively.
The waveguide transmission line of the prebuncher is
equipped by the attenuator and phase shifter (is not
shown on Fig. 4). RF measuring system parameters
permits to monitor amplitude phase and temporal de-
pendencies of all RF signals.
Fig. 4. Set-up block diagram: 1 – klystron modulator;
2 – klystron; 3, 4 – directional coupler; 5 – electron
gun; 6 – prebuncher; 7 – injector; 8 – solenoid;
9 – induction beam current monitor; 10 – system of slit
collimators; 11 – measuring movable collimator with
Faraday cup; 12 – magnetic spectrometer;
13 – collimator; 14, 15 – Faraday cups
Electron energy and energy spread are measured us-
ing magnetic spectrometer with resolution 1%. Induc-
tion beam current monitor (see Fig. 4, pos. 9) and Fara-
day cups (see Fig. 4, pos. 11, 14, 15) are used to meas-
ure electron beam current.
The experimental set-up was equipped for a long time
by the emittance measuring system based on “three-
gradient” technique [8]. In case of 1 A beam current emit-
tance measurement this method has errors due to space
charge effects on a long enough distance between quadru-
pole lens and collimating slit. Therefore, we applied anoth-
er well known “double slit” technique [9] for the emittance
measurement. According to the main principle of this tech-
nique space charge effects is eliminated during measure-
ment due to beam cutting into “beamlet” by the first slit
seeing the beam. The second slit seeing the beamlet cuts it
into a “sub-beamlet”. By scanning both slits throughout the
whole beam area, a beam distribution in the transverse
phase can be restored. Since the total charge in the beamlet
would be very small, the space charge effect is small as
well. For this technique implementation, the set-up has
been reassembled and the new designed emittance measur-
ing system has been added. The system includes three
movable slit collimators and two Faraday cups [10]. Such
composition permits to measure beam profiles both hori-
zontal and vertical and electron distribution in transverse
phase space as well. The system (see Fig. 4, pos. 10, 11,
15) is mounted directly after the injector to reduce the
beam loss. The movement of slits is actuated by step driv-
ers with minimal resolution 0.1 mm per step and is con-
trolled by the microcontroller system approached by the
same one that described in the paper [11]. The system has
also ADC converter connected to the PC that makes the
emittance measurement to be automatic.
3. MEASURED BEAM PARAMETERS
After the injector has been mounted on the experi-
mental set-up, it was pumped down up to high vacuum
pressure р = 2.6⋅10-7 Torr during several calendar days.
The cathode of the electron gun was activated after this.
The injector resonance system was RF commis-
sioned by the RF power increasing step-by-step up to
1 MW that can be maximum supplied by the RF system
ISSN 1562-6016. ВАНТ. 2014. №3(91) 72
of the set-up. For the supplying RF power of 1 MW, the
standing wave rate VSWR is 4.8, maximum on-axis
electric field strength and on cavity walls of the buncher
is 39 and 65 MV/m respectively. The RF commission-
ing was continued during 8 hours at vacuum pressure
10-6 Torr and less. Radio-frequency tests of the injector
resonance system by the applying RF power up to
1.05 MW elicited its high electric field resistance and
multipactor absence for the operating RF power values.
The main beam parameters: energy, energy spread,
beam emittance and beam intensity are interrelated and
dependent from many factors. The beam of the injector
is most affected by the RF power value and phase dif-
ference of RF power feeding the prebuncher and the
buncher, by the magnetic field value of the solenoid and
the high and heating voltage values of the cathode of the
electron gun. The detailed research of beam parameters
is complicated also by the absence of the temporal sta-
bility of all above factors that grows into valuable errors
during long-term measurements. The measurement re-
sults are also affected by the errors in alignment of the
electron gun, the resonance system and solenoid and by
the presence of electromagnetic noise from the operat-
ing powerful high-voltage equipment.
We researched the injector for different electron gun
current in the range of 0.5…1 A. Beam parameter oscil-
lations featured for unstable operating mode and typical
for five-cavity resonance system was not observed.
According to the numerical simulation, the RF pow-
er feeding the buncher should be of 1.8 MW for genera-
tion of electron beam with pulse current 1.3 A. But the
most of below described results was researched with
electron beam current of 0.7 A due to maximum RF
power of 1 MW that can supply RF system of the set-
up.
The beam emittance was measured at the distance
20 cm from the injector output. It was established that
the emittance value is the most affected by the axial
magnetic field value of the solenoid and by the dis-
placement between the solenoid magnetic axis and the
injector geometric axis. The existence of the last factor
was established experimentally (Fig. 5) while research-
ing the beam current dependence on the solenoid current
value and on its polarity in the injector that was not fed
by RF power.
Fig. 5. Beam current at the injector output vs polarity
of the solenoid current
Beam axis position was corrected by special length-
wise coils that are placed between the solenoid and the
resonance system of the injector. It should be noted, if
the beam axis is not coincide with both the solenoid
magnetic axis and the injector geometric axis the emit-
tance may be increased due to electron interaction with
both constant magnetic field and RF field components.
Therefore, evidently, transverse momentum value seen
by electrons and beam emittance should be dependent
appreciably on the transverse magnetic field of the cor-
rector. Really, it was observed in the research the varia-
tion of normalized rms beam emittance value in the
range 16…53 mm⋅mrad dependently on the magnetic
field value of the corrector. Phase space distribution for
the optimal corrector operating mode is shown on the
Fig. 6.
X (mm)
X
′ (
ra
d)
-5 0 5
-0.05
0
0.05
0.1
0.15
Fig. 6. Beam phase space for normalized rms emittance
of 16 mm⋅mrad
Results of beam emittance measurement are affected
by noises of different genesis and peripheral electrons
that composes a beam halo. These factors only increase
emittance value.
Electron energy spread of the beam was measured
for the electron gun current of 660 mA and dependently
on RF field phase in the prebuncher (Fig. 7). It was es-
tablished that in the phase range 50…90° the injector
output current was unvaried of 540 mA and the energy
spread value was in the range 6…7% for steady-state
mode.
Fig. 7. Energy spread vs rf phase in the prebuncher
for the electron gun current of 660 mA
Optimal amplitude and phase tuning of RF field in
the prebuncher permitted the electron energy spread of
ISSN 1562-6016. ВАНТ. 2014. №3(91) 73
the beam to be more narrow (Fig. 8). The energy spread
value in this case is 4.2% for the maximum electron
energy of 860 keV and the injector output current of
750 mA.
Fig. 8. Energy spread for the optimal injector tuning
Beam parameters dependences on RF field phase
and on initial injection energy of electrons into the reso-
nance system (the same as high voltage of the electron
gun) were researched more detailed when the electron
beam current at the gun output was increased up to
1.2 A. As it follows from the results of the measure-
ments, there is the sufficient wide phase range (more
then 80°) for which the electron capture factor (the rela-
tion of the injector output current to the gun output cur-
rent) does not depend sufficiently on RF field amplitude
(Fig. 9).
Fig. 9. Electron capture factor vs rf phase in the pre-
buncher. Digits are rf field amplitude in arbitrary units
In this context the RF amplitude and phase in the
prebuncher, according to the numerical simulation,
should affect an electron phase space distribution. Thus,
the optimization of RF field amplitude in the prebuncher
and the injector system phasing should be performed
synchronously with measurement of an energy spread or
a bunch phase length.
Beam energy spreads for different phase values and
identical electron gun output current of 1.2 A are shown
on Fig. 10. The optimal phase of 22° is featured by the
energy spread ≅ 8% and by the energy of 740 keV in the
maximum of the energy spread. The injector output cur-
rent is 1.1 A in this case. In case of non-optimal phase
(ϕ =300° on the Fig. 9) the injector output current is not
higher than 0.7 A.
Fig. 10. Energy spread vs rf phase in the prebuncher
for the electron gun current of 1.2 A
Beam energy spreads depend on energy of electron
beam injected into the prebuncher i.e. on anode voltage
of the electron gun. The Fig. 11 presents energy spreads
for the different anode voltage 26.5 kV (∆W/W = 13%),
25.5 kV (∆W/W = 6%), 23.5 kV (∆W/W = 14%). The
RF field phase in the prebuncher was tuned up to the
maximum beam current for the each anode voltage val-
ue. The injector output current in this case was 1 А, 1 А,
0.85 А respectively. As one can see from the Fig. 11 the
optimal value of the anode voltage for a bunch shaping
is the voltage of 25.5 kV that corresponds to the results
of the numerical simulation.
Fig. 11. Energy spread vs anode voltage of electron gun
CONCLUSIONS
Experimental research of the injector did not identify
its any unstable operation while generating intense elec-
tron beam with the pulse current up to 1 A. The ob-
tained values of the beam current, electron energy of the
beam, its emittance and energy spread are matched suf-
ficiently with simulated values for the available RF
power feeding the resonance system of the injector. It
should be noted that conditions for the optimal beam
shaping requires RF power value higher that it was in
the research. Just this fact explains the considerable
amount of electrons with low energy in energy spreads.
ISSN 1562-6016. ВАНТ. 2014. №3(91) 74
REFERENCES
1. M.I. Aizatskyi, V.I. Beloglazov, E.Z. Biller, et al.
High-power 40 MeV Electron Linac // Problems of
Atomic Science and Technology. Series «Nuclear
Physics Investigations» (49). 2008, №3, p. 25-29.
2. M.I. Aizatskyi, P.G. Gurtovenko, V.M. Kodyakov,
et al. Compact Electron Injector for S-Band Linac //
Problems of Atomic Science and Technology. Series
«Nuclear Physics Investigations» (49). 2008, №3,
p. 68-72.
3. М.І. Aizatskyi, V.F. Zhiglo, V.A. Kushnir, et al.
Development of Intense Electron Beam Injector //
Problems of Atomic Science and Technology. Series
«Nuclear Physics Investigations» (54). 2010, №3,
p. 22-25.
4. V.V. Mytrochenko, A. Opanasenko. Study of transi-
ent self-consistent beam dynamics in RF linacs using
a particle tracing code // Nuclear Instruments and
Methods in Physics Research (A558). 2006, р. 235-
239.
5. I.V. Khodak, V.A. Kushnir, V.V. Mitrochenko, et al.
Electron Gun for Technological Linear Accelerator
// Problems of Atomic Science and Technology. Se-
ries «Nuclear Physics Investigations» (36). 2000,
№2, p. 86-88.
6. M.I. Aizatskyi, V.A. Kushnir, V.V. Mytrochenko,
et al. The Results of Tuning of Intense Electron
Beam Injector // Problems of Atomic Science and
Technology. Series «Nuclear Physics Investigations»
(80). 2012, №4, p. 11-14.
7. M.I. Aizatskyi, E.Z. Biller, K.Yu. Kramarenko, et al.
The investigations of the beam characteristics in the
electron injector based on resonance system with ev-
anescent oscillations // Proceedings of RuPAC XIX.
2004, p. 444-446.
8. V.I. Artemov, S.A. Dobromirov, F.A. Peev, et al.
Beam emittance definition using a profile set // In-
struments and Experimental Techniques (Pribory i
Tekhnika Eksperimenta). 1989, №4, p. 42-44.
9. Masanori Ikegami, Masaki Kando, Hideki Dewa, et
al. Double-slit Emittance Monitor for Pulsed Proton
Beams // Bull. Inst. Chem. Res. Kyoto Univ. 1995,
v. 73, №1, p. 1-10.
10. I.V. Khodak, V.A. Kushnir, V.V. Mitrochenko,
D.L. Stepin, V.F. Zhiglo. Measurement system of a
beam spatial transverse performances of electron in-
jectors for linacs // Thesis of the X Conference on
high energy physics, nuclear physics and accelera-
tors. NSC KIPT, Kharkov. 2012, p. 79.
11. I.V. Khodak, V.A. Kushnir, V.V. Mitrochenko,
D.L. Stepin. Stabilization of a Klystron Anode Volt-
age of a Linac RF Power System by Microcontroller
Based feedback // Problems of Atomic Science and
Technology. Series «Nuclear Physics Investigations»
(80). 2012, №4, p. 46-50.
Article received 16.10.2013
ИССЛЕДОВАНИЕ ХАРАКТЕРИСТИК ИНЖЕКТОРА ИНТЕНСИВНОГО ПУЧКА ЭЛЕКТРОНОВ
Н.И. Айзацкий, И.В. Ходак, В.А. Кушнир, В.В. Митроченко, С.А. Пережогин, Д.Л. Степин, В.Ф. Жигло
Применение низковольтных источников электронов требует использования группирующих систем с не-
однородным нарастающим СВЧ-полем для эффективной группировки и ускорения электронов. Приведены
результаты исследования характеристик инжектора десятисантиметрового диапазона, использующего такую
систему. Инжектор состоит из диодной 25 кВ электронной пушки с током до 1,5 А, торроидального резона-
тора предварительной группировки, трехрезонаторной группирующей системы с коаксиально-волноводным
переходом для ввода СВЧ-мощности и секционированного соленоида. Высокочастотные испытания изго-
товленного инжектора показали достаточную надежность его работы при рабочих режимах уровня мощно-
сти СВЧ-питания, достаточную электрическую прочность и отсутствие мультипакции. Результаты исследо-
ваний параметров пучка на выходе инжектора хорошо соотносятся с расчетными данными.
ДОСЛІДЖЕННЯ ХАРАКТЕРИСТИК ІНЖЕКТОРА ІНТЕНСИВНОГО ПУЧКА ЕЛЕКТРОНІВ
М.І. Айзацький, І.В. Ходак, В.А. Кушнір, В.В. Митроченко, С.О. Пережогін, Д.Л. Стьопін, В.Ф. Жигло
Застосування низьковольтних джерел електронів вимагає використання групуючих систем з неоднорід-
ним наростаючим НВЧ-полем для ефективного групування і прискорення електронів. Приведені результати
дослідження характеристик інжектора десятисантиметрового діапазону, що використовує таку систему. Ін-
жектор складається з діодної 25 кВ електронної пушки зі струмом до 1,5 А, тороїдального резонатора попе-
реднього групування, трьохрезонаторної групуючої системи з коаксіально-хвилеводним переходом для вво-
ду НВЧ-потужності і секціонованого соленоїда. Високочастотні випробування виготовленого інжектора
показали достатню надійність його роботи при робочих режимах рівня потужності НВЧ-живлення, достат-
ню електричну міцність і відсутність мультипакції. Результати досліджень параметрів пучка на виході інже-
ктора добре співвідносяться з розрахунковими даними.
introduction
1. injector performances
2. experimental set-up
3. measured beam parameters
conclusions
references
ИССЛЕДОВАНИЕ ХАРАКТЕРИСТИК ИНЖЕКТОРА ИНТЕНСИВНОГО ПУЧКА ЭЛЕКТРОНОВ
дослідження ХАРАКТЕРИСТИК ІНЖЕКТОРА ІНТЕНСИВНОГО ПУЧКА ЕЛЕКТРОНІВ
|