Experimental study of characteristics of intense electron beam injector

Application of low voltage electron source requires the use of steep change of on-axis RF field along the buncher for electrons to be bunched and accelerated efficiently. The paper presents the results of studies of the characteristics of the S-band injector based on such buncher. The injector consi...

Full description

Saved in:
Bibliographic Details
Date:2013
Main Authors: Aizatskyi, M.I., Khodak, I.V., Kushnir, V.A., Mytrochenko, V.V., Perezhogin, S.A., Stepin, D.L., Zhiglo, V.F.
Format: Article
Language:English
Published: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2013
Series:Вопросы атомной науки и техники
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/79985
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Experimental study of characteristics of intense electron beam injector / M.I. Aizatskyi, I.V. Khodak, V.A. Kushnir, V.V. Mytrochenko, S.A. Perezhogin, D.L. Stepin, V.F. Zhiglo // Вопросы атомной науки и техники. — 2014. — № 3. — С. 70-74. — Бібліогр.: 11 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-79985
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-799852025-02-09T22:20:34Z Experimental study of characteristics of intense electron beam injector Исследование характеристик инжектора интенсивного пучка электронов Дослідження характеристик інжектора інтенсивного пучка електронів Aizatskyi, M.I. Khodak, I.V. Kushnir, V.A. Mytrochenko, V.V. Perezhogin, S.A. Stepin, D.L. Zhiglo, V.F. Теория и техника ускорения частиц Application of low voltage electron source requires the use of steep change of on-axis RF field along the buncher for electrons to be bunched and accelerated efficiently. The paper presents the results of studies of the characteristics of the S-band injector based on such buncher. The injector consists of the 25 kV diode electron gun with current of 1.5 A, the toroidal cavity prebuncher as well as the three cavity buncher with the coaxial to rectangular waveguide transition for the RF power feeding and the sectional solenoid. The RF tests of the manufactured injector have shown its sufficient reliability and lack of multipactoring. Results of studies of the beam parameters at the injector output correlate well with the calculated data. Применение низковольтных источников электронов требует использования группирующих систем с неоднородным нарастающим СВЧ-полем для эффективной группировки и ускорения электронов. Приведены результаты исследования характеристик инжектора десятисантиметрового диапазона, использующего такую систему. Инжектор состоит из диодной 25 кВ электронной пушки с током до 1,5 А, торроидального резонатора предварительной группировки, трехрезонаторной группирующей системы с коаксиально-волноводным переходом для ввода СВЧ-мощности и секционированного соленоида. Высокочастотные испытания изготовленного инжектора показали достаточную надежность его работы при рабочих режимах уровня мощности СВЧ-питания, достаточную электрическую прочность и отсутствие мультипакции. Результаты исследований параметров пучка на выходе инжектора хорошо соотносятся с расчетными данными. Застосування низьковольтних джерел електронів вимагає використання групуючих систем з неоднорідним наростаючим НВЧ-полем для ефективного групування і прискорення електронів. Приведені результати дослідження характеристик інжектора десятисантиметрового діапазону, що використовує таку систему. Інжектор складається з діодної 25 кВ електронної пушки зі струмом до 1,5 А, тороїдального резонатора попереднього групування, трьохрезонаторної групуючої системи з коаксіально-хвилеводним переходом для вводу НВЧ-потужності і секціонованого соленоїда. Високочастотні випробування виготовленого інжектора показали достатню надійність його роботи при робочих режимах рівня потужності НВЧ-живлення, достатню електричну міцність і відсутність мультипакції. Результати досліджень параметрів пучка на виході інжектора добре співвідносяться з розрахунковими даними. 2013 Article Experimental study of characteristics of intense electron beam injector / M.I. Aizatskyi, I.V. Khodak, V.A. Kushnir, V.V. Mytrochenko, S.A. Perezhogin, D.L. Stepin, V.F. Zhiglo // Вопросы атомной науки и техники. — 2014. — № 3. — С. 70-74. — Бібліогр.: 11 назв. — англ. 1562-6016 PACS: 29.25.Bx, 29.27.-a, 29.27.Ac https://nasplib.isofts.kiev.ua/handle/123456789/79985 en Вопросы атомной науки и техники application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Теория и техника ускорения частиц
Теория и техника ускорения частиц
spellingShingle Теория и техника ускорения частиц
Теория и техника ускорения частиц
Aizatskyi, M.I.
Khodak, I.V.
Kushnir, V.A.
Mytrochenko, V.V.
Perezhogin, S.A.
Stepin, D.L.
Zhiglo, V.F.
Experimental study of characteristics of intense electron beam injector
Вопросы атомной науки и техники
description Application of low voltage electron source requires the use of steep change of on-axis RF field along the buncher for electrons to be bunched and accelerated efficiently. The paper presents the results of studies of the characteristics of the S-band injector based on such buncher. The injector consists of the 25 kV diode electron gun with current of 1.5 A, the toroidal cavity prebuncher as well as the three cavity buncher with the coaxial to rectangular waveguide transition for the RF power feeding and the sectional solenoid. The RF tests of the manufactured injector have shown its sufficient reliability and lack of multipactoring. Results of studies of the beam parameters at the injector output correlate well with the calculated data.
format Article
author Aizatskyi, M.I.
Khodak, I.V.
Kushnir, V.A.
Mytrochenko, V.V.
Perezhogin, S.A.
Stepin, D.L.
Zhiglo, V.F.
author_facet Aizatskyi, M.I.
Khodak, I.V.
Kushnir, V.A.
Mytrochenko, V.V.
Perezhogin, S.A.
Stepin, D.L.
Zhiglo, V.F.
author_sort Aizatskyi, M.I.
title Experimental study of characteristics of intense electron beam injector
title_short Experimental study of characteristics of intense electron beam injector
title_full Experimental study of characteristics of intense electron beam injector
title_fullStr Experimental study of characteristics of intense electron beam injector
title_full_unstemmed Experimental study of characteristics of intense electron beam injector
title_sort experimental study of characteristics of intense electron beam injector
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2013
topic_facet Теория и техника ускорения частиц
url https://nasplib.isofts.kiev.ua/handle/123456789/79985
citation_txt Experimental study of characteristics of intense electron beam injector / M.I. Aizatskyi, I.V. Khodak, V.A. Kushnir, V.V. Mytrochenko, S.A. Perezhogin, D.L. Stepin, V.F. Zhiglo // Вопросы атомной науки и техники. — 2014. — № 3. — С. 70-74. — Бібліогр.: 11 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT aizatskyimi experimentalstudyofcharacteristicsofintenseelectronbeaminjector
AT khodakiv experimentalstudyofcharacteristicsofintenseelectronbeaminjector
AT kushnirva experimentalstudyofcharacteristicsofintenseelectronbeaminjector
AT mytrochenkovv experimentalstudyofcharacteristicsofintenseelectronbeaminjector
AT perezhoginsa experimentalstudyofcharacteristicsofintenseelectronbeaminjector
AT stepindl experimentalstudyofcharacteristicsofintenseelectronbeaminjector
AT zhiglovf experimentalstudyofcharacteristicsofintenseelectronbeaminjector
AT aizatskyimi issledovanieharakteristikinžektoraintensivnogopučkaélektronov
AT khodakiv issledovanieharakteristikinžektoraintensivnogopučkaélektronov
AT kushnirva issledovanieharakteristikinžektoraintensivnogopučkaélektronov
AT mytrochenkovv issledovanieharakteristikinžektoraintensivnogopučkaélektronov
AT perezhoginsa issledovanieharakteristikinžektoraintensivnogopučkaélektronov
AT stepindl issledovanieharakteristikinžektoraintensivnogopučkaélektronov
AT zhiglovf issledovanieharakteristikinžektoraintensivnogopučkaélektronov
AT aizatskyimi doslídžennâharakteristikínžektoraíntensivnogopučkaelektronív
AT khodakiv doslídžennâharakteristikínžektoraíntensivnogopučkaelektronív
AT kushnirva doslídžennâharakteristikínžektoraíntensivnogopučkaelektronív
AT mytrochenkovv doslídžennâharakteristikínžektoraíntensivnogopučkaelektronív
AT perezhoginsa doslídžennâharakteristikínžektoraíntensivnogopučkaelektronív
AT stepindl doslídžennâharakteristikínžektoraíntensivnogopučkaelektronív
AT zhiglovf doslídžennâharakteristikínžektoraíntensivnogopučkaelektronív
first_indexed 2025-12-01T09:55:44Z
last_indexed 2025-12-01T09:55:44Z
_version_ 1850299329900707840
fulltext ISSN 1562-6016. ВАНТ. 2014. №3(91) 70 EXPERIMENTAL STUDY OF CHARACTERISTICS OF INTENSE ELECTRON BEAM INJECTOR M.I. Aizatskyi, I.V. Khodak, V.A. Kushnir, V.V. Mytrochenko, S.A. Perezhogin, D.L. Stepin, V.F. Zhiglo National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine E-mail: khiv@kipt.kharkov.ua Application of low voltage electron source requires the use of steep change of on-axis RF field along the buncher for electrons to be bunched and accelerated efficiently. The paper presents the results of studies of the characteristics of the S-band injector based on such buncher. The injector consists of the 25 kV diode electron gun with current of 1.5 A, the toroidal cavity prebuncher as well as the three cavity buncher with the coaxial to rectangular waveguide transition for the RF power feeding and the sectional solenoid. The RF tests of the manufactured injector have shown its sufficient reliability and lack of multipactoring. Results of studies of the beam parameters at the injector output correlate well with the calculated data. PACS: 29.25.Bx, 29.27.-a, 29.27.Ac INTRODUCTION It is necessary to provide valuable average current of accelerated electrons for series of nuclear physical in- vestigations and especially for investigations of methods of medical radioisotopes production. It is well known that this task is provided by an electron beam injector mainly. Powerful linear electron accelerator of the ra- dio-chemical division in NSC KIPT [1] is equipped by the injector that requires the electron beam shaping structure to be upgraded to minimize its spatial-energy performances. In this context we have studied the new manufactured injector of intense electron beam that has to be replaced in the accelerator mentioned above. The prototype of the investigated injector is the in- jector system based on five-cavity resonance system with evanescence oscillations [2]. This system permits to shape electron beam with required performances but can be unstable in case of intense electron beam opera- tion. Therefore the one of the main purposes of the new injector experimental research is the approving of its stable operation for the intense electron beam shaping with current 1 A. 1. INJECTOR PERFORMANCES Preliminary numerical simulation of the injector oper- ation stability has shown that the electron bunching is stable for the pulse beam current up to 2.5 [3]. Injector parameters and results obtained during self-consistent beam dynamics simulation according to the method de- scribed in paper [4] are summarized in the table. Simulated injector performances Parameter Value Electron gun output current, А 1.5 Injector output beam current, А 1.34 Operating frequency, MHz 2797.15 RF power supplying the prebuncher, W 570 RF power supplying the buncher, MW 1.8 RF power pulse duration, µs 2.9 Beam pulse duration, µs 2.4 Normalized emittance, εrms x,y, π⋅mm⋅mrad (1⋅σ) 12 Beam size (4σx,y), mm 2.8 Bunch phase space (for 70% of particles), 18 degree Main units of the injector system: solenoid, resonance cavity system, coaxial-waveguide transition for RF power feeding has been manufactured during the design- engineering stage of the injector developing. Sectional view of the injector is shown on the Fig. 1. 1 2 3 5 6 4 7 Fig. 1. Injector sectional view The injector assembly consists of the diode electron gun (1) with 25 kV anode volt age [5], the cylindrical pre-buncher (2) with coaxial waveguide (7), the buncher (3) with coaxial-waveguide transition (6) for RF power supplying and the magnetic system (5) designed as a sec- tional solenoid with beam position correctors (4) added. The injector is mounted on the platform that may be aligned. The radio-frequency tuning of the injector bunching system allowed establishing the axial electric field dis- tribution (Fig. 2) and the axial magnetic field distribu- tion (Fig. 3) that correlates to the simulated ones respec- tively. Values of Z axes on Fig. 2 and Fig. 3 correspond to the same longitudinal axes of symmetry of the injec- tor. Position Z=0 mm on the Fig. 3 corresponds to the emitting surface of the cathode. ISSN 1562-6016. ВАНТ. 2014. №3(91) 71 Fig. 2. Simulated axial electric field distribution (red) and measured on the operating frequency (green) Fig. 3. Simulated and measured axial magnetic field distribution for the excitation current 100 and 300 A Experimental research of thermal and hydraulic test operation modes approved the validity of the applied numerical simulated models and chosen assumptions for the solenoid design. The results of the tests are present- ed in the paper [6] more detailed. 2. EXPERIMENTAL SET-UP The injector parameters and electron beam perfor- mances at its output have been researched experimental- ly on the special experimental set-up. The set-up (Fig. 4) purposed for measuring of beam parameters at the output of an injector system with electron energy up to 1 MeV [7]. RF power feeding system of the set-up is based on the application of an amplifying klystron KIU-12AM that operates in self-exited generator mode and on the RF waveguide transmission lines with diagnostic probes of RF signals. The output of the RF waveguide trans- mission line is equipped with two directional couplers (see Fig. 4, pos. 3, 4) purposed to feed the resonance system of the injector by the corresponding RF power. With RF power of 10 MW at the klystron output the couplers permits the prebuncher and buncher to be sup- plied with RF power of 1 kW and 1 MW respectively. The waveguide transmission line of the prebuncher is equipped by the attenuator and phase shifter (is not shown on Fig. 4). RF measuring system parameters permits to monitor amplitude phase and temporal de- pendencies of all RF signals. Fig. 4. Set-up block diagram: 1 – klystron modulator; 2 – klystron; 3, 4 – directional coupler; 5 – electron gun; 6 – prebuncher; 7 – injector; 8 – solenoid; 9 – induction beam current monitor; 10 – system of slit collimators; 11 – measuring movable collimator with Faraday cup; 12 – magnetic spectrometer; 13 – collimator; 14, 15 – Faraday cups Electron energy and energy spread are measured us- ing magnetic spectrometer with resolution 1%. Induc- tion beam current monitor (see Fig. 4, pos. 9) and Fara- day cups (see Fig. 4, pos. 11, 14, 15) are used to meas- ure electron beam current. The experimental set-up was equipped for a long time by the emittance measuring system based on “three- gradient” technique [8]. In case of 1 A beam current emit- tance measurement this method has errors due to space charge effects on a long enough distance between quadru- pole lens and collimating slit. Therefore, we applied anoth- er well known “double slit” technique [9] for the emittance measurement. According to the main principle of this tech- nique space charge effects is eliminated during measure- ment due to beam cutting into “beamlet” by the first slit seeing the beam. The second slit seeing the beamlet cuts it into a “sub-beamlet”. By scanning both slits throughout the whole beam area, a beam distribution in the transverse phase can be restored. Since the total charge in the beamlet would be very small, the space charge effect is small as well. For this technique implementation, the set-up has been reassembled and the new designed emittance measur- ing system has been added. The system includes three movable slit collimators and two Faraday cups [10]. Such composition permits to measure beam profiles both hori- zontal and vertical and electron distribution in transverse phase space as well. The system (see Fig. 4, pos. 10, 11, 15) is mounted directly after the injector to reduce the beam loss. The movement of slits is actuated by step driv- ers with minimal resolution 0.1 mm per step and is con- trolled by the microcontroller system approached by the same one that described in the paper [11]. The system has also ADC converter connected to the PC that makes the emittance measurement to be automatic. 3. MEASURED BEAM PARAMETERS After the injector has been mounted on the experi- mental set-up, it was pumped down up to high vacuum pressure р = 2.6⋅10-7 Torr during several calendar days. The cathode of the electron gun was activated after this. The injector resonance system was RF commis- sioned by the RF power increasing step-by-step up to 1 MW that can be maximum supplied by the RF system ISSN 1562-6016. ВАНТ. 2014. №3(91) 72 of the set-up. For the supplying RF power of 1 MW, the standing wave rate VSWR is 4.8, maximum on-axis electric field strength and on cavity walls of the buncher is 39 and 65 MV/m respectively. The RF commission- ing was continued during 8 hours at vacuum pressure 10-6 Torr and less. Radio-frequency tests of the injector resonance system by the applying RF power up to 1.05 MW elicited its high electric field resistance and multipactor absence for the operating RF power values. The main beam parameters: energy, energy spread, beam emittance and beam intensity are interrelated and dependent from many factors. The beam of the injector is most affected by the RF power value and phase dif- ference of RF power feeding the prebuncher and the buncher, by the magnetic field value of the solenoid and the high and heating voltage values of the cathode of the electron gun. The detailed research of beam parameters is complicated also by the absence of the temporal sta- bility of all above factors that grows into valuable errors during long-term measurements. The measurement re- sults are also affected by the errors in alignment of the electron gun, the resonance system and solenoid and by the presence of electromagnetic noise from the operat- ing powerful high-voltage equipment. We researched the injector for different electron gun current in the range of 0.5…1 A. Beam parameter oscil- lations featured for unstable operating mode and typical for five-cavity resonance system was not observed. According to the numerical simulation, the RF pow- er feeding the buncher should be of 1.8 MW for genera- tion of electron beam with pulse current 1.3 A. But the most of below described results was researched with electron beam current of 0.7 A due to maximum RF power of 1 MW that can supply RF system of the set- up. The beam emittance was measured at the distance 20 cm from the injector output. It was established that the emittance value is the most affected by the axial magnetic field value of the solenoid and by the dis- placement between the solenoid magnetic axis and the injector geometric axis. The existence of the last factor was established experimentally (Fig. 5) while research- ing the beam current dependence on the solenoid current value and on its polarity in the injector that was not fed by RF power. Fig. 5. Beam current at the injector output vs polarity of the solenoid current Beam axis position was corrected by special length- wise coils that are placed between the solenoid and the resonance system of the injector. It should be noted, if the beam axis is not coincide with both the solenoid magnetic axis and the injector geometric axis the emit- tance may be increased due to electron interaction with both constant magnetic field and RF field components. Therefore, evidently, transverse momentum value seen by electrons and beam emittance should be dependent appreciably on the transverse magnetic field of the cor- rector. Really, it was observed in the research the varia- tion of normalized rms beam emittance value in the range 16…53 mm⋅mrad dependently on the magnetic field value of the corrector. Phase space distribution for the optimal corrector operating mode is shown on the Fig. 6. X (mm) X ′ ( ra d) -5 0 5 -0.05 0 0.05 0.1 0.15 Fig. 6. Beam phase space for normalized rms emittance of 16 mm⋅mrad Results of beam emittance measurement are affected by noises of different genesis and peripheral electrons that composes a beam halo. These factors only increase emittance value. Electron energy spread of the beam was measured for the electron gun current of 660 mA and dependently on RF field phase in the prebuncher (Fig. 7). It was es- tablished that in the phase range 50…90° the injector output current was unvaried of 540 mA and the energy spread value was in the range 6…7% for steady-state mode. Fig. 7. Energy spread vs rf phase in the prebuncher for the electron gun current of 660 mA Optimal amplitude and phase tuning of RF field in the prebuncher permitted the electron energy spread of ISSN 1562-6016. ВАНТ. 2014. №3(91) 73 the beam to be more narrow (Fig. 8). The energy spread value in this case is 4.2% for the maximum electron energy of 860 keV and the injector output current of 750 mA. Fig. 8. Energy spread for the optimal injector tuning Beam parameters dependences on RF field phase and on initial injection energy of electrons into the reso- nance system (the same as high voltage of the electron gun) were researched more detailed when the electron beam current at the gun output was increased up to 1.2 A. As it follows from the results of the measure- ments, there is the sufficient wide phase range (more then 80°) for which the electron capture factor (the rela- tion of the injector output current to the gun output cur- rent) does not depend sufficiently on RF field amplitude (Fig. 9). Fig. 9. Electron capture factor vs rf phase in the pre- buncher. Digits are rf field amplitude in arbitrary units In this context the RF amplitude and phase in the prebuncher, according to the numerical simulation, should affect an electron phase space distribution. Thus, the optimization of RF field amplitude in the prebuncher and the injector system phasing should be performed synchronously with measurement of an energy spread or a bunch phase length. Beam energy spreads for different phase values and identical electron gun output current of 1.2 A are shown on Fig. 10. The optimal phase of 22° is featured by the energy spread ≅ 8% and by the energy of 740 keV in the maximum of the energy spread. The injector output cur- rent is 1.1 A in this case. In case of non-optimal phase (ϕ =300° on the Fig. 9) the injector output current is not higher than 0.7 A. Fig. 10. Energy spread vs rf phase in the prebuncher for the electron gun current of 1.2 A Beam energy spreads depend on energy of electron beam injected into the prebuncher i.e. on anode voltage of the electron gun. The Fig. 11 presents energy spreads for the different anode voltage 26.5 kV (∆W/W = 13%), 25.5 kV (∆W/W = 6%), 23.5 kV (∆W/W = 14%). The RF field phase in the prebuncher was tuned up to the maximum beam current for the each anode voltage val- ue. The injector output current in this case was 1 А, 1 А, 0.85 А respectively. As one can see from the Fig. 11 the optimal value of the anode voltage for a bunch shaping is the voltage of 25.5 kV that corresponds to the results of the numerical simulation. Fig. 11. Energy spread vs anode voltage of electron gun CONCLUSIONS Experimental research of the injector did not identify its any unstable operation while generating intense elec- tron beam with the pulse current up to 1 A. The ob- tained values of the beam current, electron energy of the beam, its emittance and energy spread are matched suf- ficiently with simulated values for the available RF power feeding the resonance system of the injector. It should be noted that conditions for the optimal beam shaping requires RF power value higher that it was in the research. Just this fact explains the considerable amount of electrons with low energy in energy spreads. ISSN 1562-6016. ВАНТ. 2014. №3(91) 74 REFERENCES 1. M.I. Aizatskyi, V.I. Beloglazov, E.Z. Biller, et al. High-power 40 MeV Electron Linac // Problems of Atomic Science and Technology. Series «Nuclear Physics Investigations» (49). 2008, №3, p. 25-29. 2. M.I. Aizatskyi, P.G. Gurtovenko, V.M. Kodyakov, et al. Compact Electron Injector for S-Band Linac // Problems of Atomic Science and Technology. Series «Nuclear Physics Investigations» (49). 2008, №3, p. 68-72. 3. М.І. Aizatskyi, V.F. Zhiglo, V.A. Kushnir, et al. Development of Intense Electron Beam Injector // Problems of Atomic Science and Technology. Series «Nuclear Physics Investigations» (54). 2010, №3, p. 22-25. 4. V.V. Mytrochenko, A. Opanasenko. Study of transi- ent self-consistent beam dynamics in RF linacs using a particle tracing code // Nuclear Instruments and Methods in Physics Research (A558). 2006, р. 235- 239. 5. I.V. Khodak, V.A. Kushnir, V.V. Mitrochenko, et al. Electron Gun for Technological Linear Accelerator // Problems of Atomic Science and Technology. Se- ries «Nuclear Physics Investigations» (36). 2000, №2, p. 86-88. 6. M.I. Aizatskyi, V.A. Kushnir, V.V. Mytrochenko, et al. The Results of Tuning of Intense Electron Beam Injector // Problems of Atomic Science and Technology. Series «Nuclear Physics Investigations» (80). 2012, №4, p. 11-14. 7. M.I. Aizatskyi, E.Z. Biller, K.Yu. Kramarenko, et al. The investigations of the beam characteristics in the electron injector based on resonance system with ev- anescent oscillations // Proceedings of RuPAC XIX. 2004, p. 444-446. 8. V.I. Artemov, S.A. Dobromirov, F.A. Peev, et al. Beam emittance definition using a profile set // In- struments and Experimental Techniques (Pribory i Tekhnika Eksperimenta). 1989, №4, p. 42-44. 9. Masanori Ikegami, Masaki Kando, Hideki Dewa, et al. Double-slit Emittance Monitor for Pulsed Proton Beams // Bull. Inst. Chem. Res. Kyoto Univ. 1995, v. 73, №1, p. 1-10. 10. I.V. Khodak, V.A. Kushnir, V.V. Mitrochenko, D.L. Stepin, V.F. Zhiglo. Measurement system of a beam spatial transverse performances of electron in- jectors for linacs // Thesis of the X Conference on high energy physics, nuclear physics and accelera- tors. NSC KIPT, Kharkov. 2012, p. 79. 11. I.V. Khodak, V.A. Kushnir, V.V. Mitrochenko, D.L. Stepin. Stabilization of a Klystron Anode Volt- age of a Linac RF Power System by Microcontroller Based feedback // Problems of Atomic Science and Technology. Series «Nuclear Physics Investigations» (80). 2012, №4, p. 46-50. Article received 16.10.2013 ИССЛЕДОВАНИЕ ХАРАКТЕРИСТИК ИНЖЕКТОРА ИНТЕНСИВНОГО ПУЧКА ЭЛЕКТРОНОВ Н.И. Айзацкий, И.В. Ходак, В.А. Кушнир, В.В. Митроченко, С.А. Пережогин, Д.Л. Степин, В.Ф. Жигло Применение низковольтных источников электронов требует использования группирующих систем с не- однородным нарастающим СВЧ-полем для эффективной группировки и ускорения электронов. Приведены результаты исследования характеристик инжектора десятисантиметрового диапазона, использующего такую систему. Инжектор состоит из диодной 25 кВ электронной пушки с током до 1,5 А, торроидального резона- тора предварительной группировки, трехрезонаторной группирующей системы с коаксиально-волноводным переходом для ввода СВЧ-мощности и секционированного соленоида. Высокочастотные испытания изго- товленного инжектора показали достаточную надежность его работы при рабочих режимах уровня мощно- сти СВЧ-питания, достаточную электрическую прочность и отсутствие мультипакции. Результаты исследо- ваний параметров пучка на выходе инжектора хорошо соотносятся с расчетными данными. ДОСЛІДЖЕННЯ ХАРАКТЕРИСТИК ІНЖЕКТОРА ІНТЕНСИВНОГО ПУЧКА ЕЛЕКТРОНІВ М.І. Айзацький, І.В. Ходак, В.А. Кушнір, В.В. Митроченко, С.О. Пережогін, Д.Л. Стьопін, В.Ф. Жигло Застосування низьковольтних джерел електронів вимагає використання групуючих систем з неоднорід- ним наростаючим НВЧ-полем для ефективного групування і прискорення електронів. Приведені результати дослідження характеристик інжектора десятисантиметрового діапазону, що використовує таку систему. Ін- жектор складається з діодної 25 кВ електронної пушки зі струмом до 1,5 А, тороїдального резонатора попе- реднього групування, трьохрезонаторної групуючої системи з коаксіально-хвилеводним переходом для вво- ду НВЧ-потужності і секціонованого соленоїда. Високочастотні випробування виготовленого інжектора показали достатню надійність його роботи при робочих режимах рівня потужності НВЧ-живлення, достат- ню електричну міцність і відсутність мультипакції. Результати досліджень параметрів пучка на виході інже- ктора добре співвідносяться з розрахунковими даними. introduction 1. injector performances 2. experimental set-up 3. measured beam parameters conclusions references ИССЛЕДОВАНИЕ ХАРАКТЕРИСТИК ИНЖЕКТОРА ИНТЕНСИВНОГО ПУЧКА ЭЛЕКТРОНОВ дослідження ХАРАКТЕРИСТИК ІНЖЕКТОРА ІНТЕНСИВНОГО ПУЧКА ЕЛЕКТРОНІВ