Generating functional in classical Hamiltonian mechanics

We give a brief survey of a path-integral formulation of classical Hamiltonian dynamics that means a functional-integral representation of classical transition probabilities. This functional exhibits a hidden BRST and anti-BRST invariance. Therefore a simple expression, in terms of superfields, is r...

Full description

Saved in:
Bibliographic Details
Published in:Вопросы атомной науки и техники
Date:2001
Main Author: Zazunov, L.G.
Format: Article
Language:English
Published: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2001
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/80055
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Generating functional in classical Hamiltonian mechanics / L.G. Zazunov // Вопросы атомной науки и техники. — 2001. — № 6. — С. 383-385. — Бібліогр.: 10 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-80055
record_format dspace
spelling Zazunov, L.G.
2015-04-09T16:51:16Z
2015-04-09T16:51:16Z
2001
Generating functional in classical Hamiltonian mechanics / L.G. Zazunov // Вопросы атомной науки и техники. — 2001. — № 6. — С. 383-385. — Бібліогр.: 10 назв. — англ.
1562-6016
PASC: 03.40.-i, 03.65.Db
https://nasplib.isofts.kiev.ua/handle/123456789/80055
We give a brief survey of a path-integral formulation of classical Hamiltonian dynamics that means a functional-integral representation of classical transition probabilities. This functional exhibits a hidden BRST and anti-BRST invariance. Therefore a simple expression, in terms of superfields, is received for the generating functional. We extend the results for discrete classical systems to continuum mechanics.
The author is obliged to A.S. Bakai for constant interest to this work and also to Ju.P. Stepanovsky for useful remarks.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Quantum fluids
Generating functional in classical Hamiltonian mechanics
Производящий функционал в классической гамильтоновой механике
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Generating functional in classical Hamiltonian mechanics
spellingShingle Generating functional in classical Hamiltonian mechanics
Zazunov, L.G.
Quantum fluids
title_short Generating functional in classical Hamiltonian mechanics
title_full Generating functional in classical Hamiltonian mechanics
title_fullStr Generating functional in classical Hamiltonian mechanics
title_full_unstemmed Generating functional in classical Hamiltonian mechanics
title_sort generating functional in classical hamiltonian mechanics
author Zazunov, L.G.
author_facet Zazunov, L.G.
topic Quantum fluids
topic_facet Quantum fluids
publishDate 2001
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Производящий функционал в классической гамильтоновой механике
description We give a brief survey of a path-integral formulation of classical Hamiltonian dynamics that means a functional-integral representation of classical transition probabilities. This functional exhibits a hidden BRST and anti-BRST invariance. Therefore a simple expression, in terms of superfields, is received for the generating functional. We extend the results for discrete classical systems to continuum mechanics.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/80055
citation_txt Generating functional in classical Hamiltonian mechanics / L.G. Zazunov // Вопросы атомной науки и техники. — 2001. — № 6. — С. 383-385. — Бібліогр.: 10 назв. — англ.
work_keys_str_mv AT zazunovlg generatingfunctionalinclassicalhamiltonianmechanics
AT zazunovlg proizvodâŝiifunkcionalvklassičeskoigamilʹtonovoimehanike
first_indexed 2025-11-27T13:51:02Z
last_indexed 2025-11-27T13:51:02Z
_version_ 1850852355134717952