Modernization of the multipurpose accelerating system VGIK-1
The aim of VGIK-1 modernization is the possibility of metal surface processing by ion and electron irradiation, widening a range of applied energies and beam densities, vacuum condition control. This is reached by usage of two diodes, where one of them has isolated and defocussing magnetic system an...
Gespeichert in:
| Veröffentlicht in: | Вопросы атомной науки и техники |
|---|---|
| Datum: | 2002 |
| Hauptverfasser: | , , , , , , , , , , , , , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2002
|
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/80113 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Modernization of the multipurpose accelerating system VGIK-1 / V.B. Yuferov, L.G. Sorokovoj, N.A. Kosik, E.I. Skibenko, O.S. Dryj, V.G. Artyukh, Yu.V. Kholod, V.F. Malets, E.V. Mufel, V.Ya. Chernyshenko, A.N. Ozerov, I.V. Buravilov, A.N. Ponomaryov, A.N. Rybalko, V.I. Tkachev // Вопросы атомной науки и техники. — 2002. — № 2. — С. 118-120. — Бібліогр.: 10 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-80113 |
|---|---|
| record_format |
dspace |
| spelling |
Yuferov, V.B. Sorokovoj, L.G. Kosik, N.A. Skibenko, E.I. Dryj, O.S. Artyukh, V.G. Kholod, Yu.V. Malets, V.F. Mufel, E.V. Chernyshenko, V.Ya. Ozerov, A.N. Buravilov, I.V. Ponomaryov, A.N. Rybalko, A.N. Tkachev, V.I. 2015-04-12T06:11:52Z 2015-04-12T06:11:52Z 2002 Modernization of the multipurpose accelerating system VGIK-1 / V.B. Yuferov, L.G. Sorokovoj, N.A. Kosik, E.I. Skibenko, O.S. Dryj, V.G. Artyukh, Yu.V. Kholod, V.F. Malets, E.V. Mufel, V.Ya. Chernyshenko, A.N. Ozerov, I.V. Buravilov, A.N. Ponomaryov, A.N. Rybalko, V.I. Tkachev // Вопросы атомной науки и техники. — 2002. — № 2. — С. 118-120. — Бібліогр.: 10 назв. — англ. 1562-6016 PACS: 29.17.+w, 29.25.-t, 29.27.-a https://nasplib.isofts.kiev.ua/handle/123456789/80113 The aim of VGIK-1 modernization is the possibility of metal surface processing by ion and electron irradiation, widening a range of applied energies and beam densities, vacuum condition control. This is reached by usage of two diodes, where one of them has isolated and defocussing magnetic system and another one has plasma emitter for extraction of ions and electrons. There is also the system of plasma parameters control. Vacuum system includes the cryogenic, diffusion and titanium sorbtion pumps and mass-spectrometric system en Національний науковий центр «Харківський фізико-технічний інститут» НАН України Вопросы атомной науки и техники Theory and technics of particle acceleration Modernization of the multipurpose accelerating system VGIK-1 Модернизация многоцелевого ускорительного комплекса ВГИК-1 Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Modernization of the multipurpose accelerating system VGIK-1 |
| spellingShingle |
Modernization of the multipurpose accelerating system VGIK-1 Yuferov, V.B. Sorokovoj, L.G. Kosik, N.A. Skibenko, E.I. Dryj, O.S. Artyukh, V.G. Kholod, Yu.V. Malets, V.F. Mufel, E.V. Chernyshenko, V.Ya. Ozerov, A.N. Buravilov, I.V. Ponomaryov, A.N. Rybalko, A.N. Tkachev, V.I. Theory and technics of particle acceleration |
| title_short |
Modernization of the multipurpose accelerating system VGIK-1 |
| title_full |
Modernization of the multipurpose accelerating system VGIK-1 |
| title_fullStr |
Modernization of the multipurpose accelerating system VGIK-1 |
| title_full_unstemmed |
Modernization of the multipurpose accelerating system VGIK-1 |
| title_sort |
modernization of the multipurpose accelerating system vgik-1 |
| author |
Yuferov, V.B. Sorokovoj, L.G. Kosik, N.A. Skibenko, E.I. Dryj, O.S. Artyukh, V.G. Kholod, Yu.V. Malets, V.F. Mufel, E.V. Chernyshenko, V.Ya. Ozerov, A.N. Buravilov, I.V. Ponomaryov, A.N. Rybalko, A.N. Tkachev, V.I. |
| author_facet |
Yuferov, V.B. Sorokovoj, L.G. Kosik, N.A. Skibenko, E.I. Dryj, O.S. Artyukh, V.G. Kholod, Yu.V. Malets, V.F. Mufel, E.V. Chernyshenko, V.Ya. Ozerov, A.N. Buravilov, I.V. Ponomaryov, A.N. Rybalko, A.N. Tkachev, V.I. |
| topic |
Theory and technics of particle acceleration |
| topic_facet |
Theory and technics of particle acceleration |
| publishDate |
2002 |
| language |
English |
| container_title |
Вопросы атомной науки и техники |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| format |
Article |
| title_alt |
Модернизация многоцелевого ускорительного комплекса ВГИК-1 |
| description |
The aim of VGIK-1 modernization is the possibility of metal surface processing by ion and electron irradiation, widening a range of applied energies and beam densities, vacuum condition control. This is reached by usage of two diodes, where one of them has isolated and defocussing magnetic system and another one has plasma emitter for extraction of ions and electrons. There is also the system of plasma parameters control. Vacuum system includes the cryogenic, diffusion and titanium sorbtion pumps and mass-spectrometric system
|
| issn |
1562-6016 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/80113 |
| citation_txt |
Modernization of the multipurpose accelerating system VGIK-1 / V.B. Yuferov, L.G. Sorokovoj, N.A. Kosik, E.I. Skibenko, O.S. Dryj, V.G. Artyukh, Yu.V. Kholod, V.F. Malets, E.V. Mufel, V.Ya. Chernyshenko, A.N. Ozerov, I.V. Buravilov, A.N. Ponomaryov, A.N. Rybalko, V.I. Tkachev // Вопросы атомной науки и техники. — 2002. — № 2. — С. 118-120. — Бібліогр.: 10 назв. — англ. |
| work_keys_str_mv |
AT yuferovvb modernizationofthemultipurposeacceleratingsystemvgik1 AT sorokovojlg modernizationofthemultipurposeacceleratingsystemvgik1 AT kosikna modernizationofthemultipurposeacceleratingsystemvgik1 AT skibenkoei modernizationofthemultipurposeacceleratingsystemvgik1 AT dryjos modernizationofthemultipurposeacceleratingsystemvgik1 AT artyukhvg modernizationofthemultipurposeacceleratingsystemvgik1 AT kholodyuv modernizationofthemultipurposeacceleratingsystemvgik1 AT maletsvf modernizationofthemultipurposeacceleratingsystemvgik1 AT mufelev modernizationofthemultipurposeacceleratingsystemvgik1 AT chernyshenkovya modernizationofthemultipurposeacceleratingsystemvgik1 AT ozerovan modernizationofthemultipurposeacceleratingsystemvgik1 AT buraviloviv modernizationofthemultipurposeacceleratingsystemvgik1 AT ponomaryovan modernizationofthemultipurposeacceleratingsystemvgik1 AT rybalkoan modernizationofthemultipurposeacceleratingsystemvgik1 AT tkachevvi modernizationofthemultipurposeacceleratingsystemvgik1 AT yuferovvb modernizaciâmnogocelevogouskoritelʹnogokompleksavgik1 AT sorokovojlg modernizaciâmnogocelevogouskoritelʹnogokompleksavgik1 AT kosikna modernizaciâmnogocelevogouskoritelʹnogokompleksavgik1 AT skibenkoei modernizaciâmnogocelevogouskoritelʹnogokompleksavgik1 AT dryjos modernizaciâmnogocelevogouskoritelʹnogokompleksavgik1 AT artyukhvg modernizaciâmnogocelevogouskoritelʹnogokompleksavgik1 AT kholodyuv modernizaciâmnogocelevogouskoritelʹnogokompleksavgik1 AT maletsvf modernizaciâmnogocelevogouskoritelʹnogokompleksavgik1 AT mufelev modernizaciâmnogocelevogouskoritelʹnogokompleksavgik1 AT chernyshenkovya modernizaciâmnogocelevogouskoritelʹnogokompleksavgik1 AT ozerovan modernizaciâmnogocelevogouskoritelʹnogokompleksavgik1 AT buraviloviv modernizaciâmnogocelevogouskoritelʹnogokompleksavgik1 AT ponomaryovan modernizaciâmnogocelevogouskoritelʹnogokompleksavgik1 AT rybalkoan modernizaciâmnogocelevogouskoritelʹnogokompleksavgik1 AT tkachevvi modernizaciâmnogocelevogouskoritelʹnogokompleksavgik1 |
| first_indexed |
2025-11-26T02:01:01Z |
| last_indexed |
2025-11-26T02:01:01Z |
| _version_ |
1850607304173420544 |
| fulltext |
MODERNIZATION OF THE MULTIPURPOSE ACCELERATING
SYSTEM "VGIK-1"
V.B. Yuferov, L.G. Sorokovoj, N.A. Kosik, E.I. Skibenko, O.S. Dryj, V.G. Artyukh
Yu.V. Kholod, V.F. Malets, E.V. Mufel, V.Ya. Chernyshenko, A.N. Ozerov, I.V. Buravilov
A.N. Ponomaryov, A.N. Rybalko, V.I. Tkachev
National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine
e-mail: v.yuferov@kipt.kharkov.ua
The aim of VGIK-1 modernization is the possibility of metal surface processing by ion and electron irradiation,
widening a range of applied energies and beam densities, vacuum condition control. This is reached by usage of two
diodes, where one of them has isolated and defocussing magnetic system and another one has plasma emitter for
extraction of ions and electrons. There is also the system of plasma parameters control. Vacuum system includes the
cryogenic, diffusion and titanium sorbtion pumps and mass-spectrometric system
PACS: 29.17.+w, 29.25.-t, 29.27.-a
INTRODUCTION
Nowadays the modification of surface - volumetric
structure, composition and properties of materials under
action of various kinds of an irradiation are intensively
investigated. The application of pulse high density
stream of particles and energy at a power level 107÷
1011 W/cm2 and energy stream up to 100 J/cm2 allows to
execute changing of materials properties in very short
time, about duration of a beam pulse. The huge speeds
of heating and cooling of a surface in case of a pulse
irradiation essentially influence on structure and
properties of superficial layers of a material. The
increasing of durability hardness and corrosion
resistance is the result of this influence.
The accelerating system VGIK-1 was developed as a
pulsed microwave generator of a GW-power with a
wavelength of about 10 cm operating in a microsecond
range. This system, in particular, was used to carry out
investigations of a possibilty to operate in a frequency-
periodical regime of a herts range. In recent years, at
this accelerator one conducted the experiments related
with interaction of high-power pulsed electron beams
with metal surfaces. The results of a study on the metal
surface structure modification under influence of high-
power pulsed electron beams in the range of densities
from 107 to 1010 W/cm2 [1-10] have showed a need and
promise of further changing the operating conditions in
a more extended range of parameters. For this purpose
we perform the modernization of the irradiating system
VGIK-1 with realization of the following capabilities:
- irradiation with electrons and ions;
- change of a particle energy in a wider range of
energies;
- control and monitoring of vacuum conditions in
rather wide limits for gas pressure and composition;
- control of plasma cathode parameters;
- change of a density and energy content of pulsed
electron beams.
DESCRIPTION OF INSTALLATIONS
The schematic diagram of a new version of the
accelerator installation VGIK−1M is presented in Fig. 1.
Unlike the former variant, there used are two diodes for
different irradiation energies. One of these diodes
becomes magnetoinsulated, and besides the insulation,
the magnetic field is also a guiding, forming and
transporting one.
Fig. 1. Schematic diagram of the installation BGIK
−1. 1,2 - diodes; 3 -MG; 4 - PCG; 5 - control block; 6 -
beam inlet chamber ; targets in diodes; 8 - mass-
spectrometer; 9 - cryopump; 10 - microwave
interferometer; 11 - nitrogen radiation screen
118 PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2002, № 2.
Series: Nuclear Physics Investigations (40), p. 118-120.
mailto:v.yuferov@kipt.kharkov.ua
-cryopump; 12 - pumpdown system; 13 - multigap
plasma gun
When reversing the polarity of the Marx generator
(MG) the cathode will be at a negative potential, unlike
the former case with cathode grounding. The beam
extraction, as before, will be perfotrmed with an anode
grid. As the beam moves in a decreasing magnetic field
its density decreases. Similarly the beam power density
is changing. We have calculated and measured the
topography of the magnetic system (Fig. 2) being
simultaneously a magnetic insulation of the diode and a
system of the guiding field. Movement of a movable
target with samples along the beam trajectory will allow
obtaining thereon the designed power density values.
The power density control will be carried out with the
use of thermocouple sensors attached on the sample
holders. At instant of the current irradiating pulse the
control system will be separated from the sample
holders and will be switched on for measurement with a
delay of about 1 s after passage of a pulse. Since, the
time of setting an equilibrium temperature does not
exeed 1 s, the radiation losses at a mean sensor
temperature of about 100 oC will be not higher than 1-
2% that is well sufficient to control the irradiation
conditions. Usage of metal- and dielectric anode units
will make it possible to form ion beams. The targets will
be placed in the cathode unit.
Fig. 2. Trajectory of electron movement in the
defocusing system with a device for changing the beam
energy content. 1 - cathode; 2 - magnetic lens; 3 -
measuring chamber; 4- movable target; 5 - trajectory
of electron movement at HS=3.06.104; 6 - at
HS=4.6.104; 7 - at HS=7.4.104
As it was mentioned, the change of the electron
beam density will be performed with the help of a
focusing and defocusing magnetic field. In this case the
area of the surface under irradiation can change from
100 to 600 cm2. Change of the gap of MG dischargers
will allow one to enlarge the value of output beam
energies from 270 kV in direction of energy increasing
up to 350 kV that is a limiting value for the given
acceleration tube. There is also a possibility to decrease
the beam energies up to 150 kV in the case of MG
switching over. For the further decrease of the beam
energy we intend to use an isolated chamber of the
second diode with a plasma cathode that will be formed
by discharging the condenser bank of the pulse current
generator (PCG) (capacity of 3 µF, voltage of 40 kV)
onto the ring multigap (12 gaps) plasma guns.
Movement of plasma bunchs into the inside on the
system radius will occur due to magnetic fields of the
reverse current lead. The parameters of the plasma gun
and its power supply system enable one, according to
the data of [2], to expect the plasma cathode densities at
a level of 1013÷1014 cm-3. For control of these parameters
a microwave interferometer with wavelengths 4 and
8 mm was mounted. Irradiation of samples placed on a
metal rod, insulated up to 40 kV, can be performed with
a high-voltage system of the PCG №2 which is turned
on via the system of controllable time delay. In so doing
one can apply pulses of a positive or negative polarity
onto the target relatively to the plasma cathode. The
plasma composition of plasma guns, which in main is
determined by hydrogen and carbon, can be changed by
introducing in the discharge chamber additional gases:
hydrogen, nitrogen, argon etc. The expected electron
and ion beam parameters lie at the following level:
energy from 20 to 40 kV, current from 10 to 50 kA,
duration of about 500 ns.
Ones of the main parameters in the process of metal
treatment in vacuum are the vacuum properties -
pressure and composition - not only in the gaseous
phase but on the surface of objects under irradiation too.
In accelerator tubes of the majority of accelerators of a
direct action one uses organic materials of plastic type
with an insufficient temperature stability and,
correspondingly, high vapour pressure, e.g. acrylic
plastic, caprolon etc. Therefore, obtaining pure
controllable conditions in the target region with the
commonly used pumping means is a problematic task.
However, the use of pumping means having a high
capacity and not contaminating the volumes being
evacuated, e.g. cryogenic condensation and adsorption
pums, allows one to overcome positively this problem
under a condition of the preliminary heating or plasma
treatment of targets. Thus, in the design under
consideration, besides the described in [4] helium- and
nitrogen condensation and sorption pumpes, the titanium
arc-evaparation pumps will be used. Helium cryogenic
pumps have the hydrogen evacuation rate at a level of
1.104 l/s, nitrogen condensation pumps have the
hydrocarbon evacuation rate of about 5.104 l/s, titanium
pumps have the hydrogen evacuation rate of about
2.104 l/s. The gas composition will be controlled with
the help of a mass-spectrometer IPDO−2 having a low
sensitivity to pulse inducing. Since in diodes, at the
instant of a pulse, the vacuum conditions can be changed
more than by an order of magnitude [4] the mass-
spectrometer is placed in a special chamber connected to
the diode chamber by the controllable conduction and
has the independent pumping system.
119
REFERENCES
1. V.B. Yuferov, E.I. Skibenko, L.G. Sorokovoj,
V.G. Artyukh, Yu.V. Kholod, V.F. Malet,
E.V. Mufel. On a possibility to use the pulsed
electron accelerating system for modification of
surface-volume properties of diverse materials //
Voprosy atomnoj nauki i tekhnik. Ser. Radiation
damage physics and radiation materials science.
1997, №1(65), 2(66), p. 197-198 (in Russian).
2. E.I. Skibenko, V.B. Yuferov, V.G. Artyukh.
The small-size electron accelerator "DI" with high-
performance plasma current switch // Problems of
Atomic Science and Technology, Series: Plasma
Physics. 1999, №3(3), 4(4), Kharkov, p. 236.
3. V.B. Yuferov, O.S. Druj, V.G. Artyukh,
V.F. Malets. Small-size ultrahigh-power pulsed
electron accelerator with a microwave generator for
irradiation DIN-2K // Voprosy atomnoj nauki i
tekhniki, Ser. Radiation damage physics and
radiation materials science. 1998, №1(67), 2(68),
p. 173-174 (in Russian).
4. V.G. Artyukh, O.S. Druy, Yu.V. Kholod,
V.B. Yuferov. Pulsed Electron Accelerator with
Plasma Opening Switch. Abstract XVI
International Seminar on Linear Acceleration of
Charged Particle. 6–12 September 1999, Alushta,
Crimea.
5. V. Yuferov, V. Kotenko, I. Onishenko,
L. Sorokovoy, Yu. Kholod, E. Skibenko,
V. Artyukh. Gas Desorption. Ions Acceleration at
the Disruption of HF-oscillations Generation in a
Microsecond Vircator. Abstract XVI International
Seminar on Linear Acceleration of Charged
Particles, 6–12 September 1999, Alushta, Crimea.
6. V. Yuferov, V. Kotenko, I. Onishchenko,
V. Chorny, L. Sorokovoy, Yu. Kholod,
E. Skibenko. Ion Acceleration at the Disruption of
HF – Oscillation Generation in a Microsecond
Vircator. 12th International Pulsed Power
Conference. June 1999.
7. V.B. Yuferov, V.G. Kotenko,
I.N. Onishchenko, L.G. Sorokovoy, Yu.V. Kholod,
E.I. Skibenko. Microsecond Microwave Generation
In the Diode And Accompanying Phenomena //
Problems of Atomic Science and Technology
(Problemy Atomnoy Nauki i Tekhniki), ser.
Nuclear-Physics Investigations. 2000, №2(36),
p. 97−99.
8. I.M. Neklyudov, V.B. Yuferov, N.A. Kosik,
N.D. Rybalchenko, L.G. Sorokovoj, V.G. Artyukh,
O.S. Druj, E.I. Skibenko, Yu.V. Kholod,
V.F. Malets, N.V. Kamyshanchenko,
V.A. Belenko. Development of electrophysical
equipment and technology for modification of
metal surface properties // Vestnik of Kharkov State
Polytechnical University, ser. Novel designs in
advanced technologies. 2000, №84, Kharkov
p. 107-112 (in Russian)
9. I.M. Neklyudov, V.B. Yuferov,
N.D. Rybal’chenko, L.G. Sorokovoj,
V.G. Artyukh, O.S. Druj, E.I. Skibenko,
Yu.V. Kholod, V.F. Malets (NSC KIPT, Kharkov,
Ukraine), N.V. Kamyshanchenko, V.A. Belenko
(BSU, Belgorog, Russia). Effect of high-power
pulse electron beam action on the structure and
hardness of the X18N10T steel surface //
Nauchnyye vedomosti. Ser. Physics. 2000, №1(10),
p. 45-49, Belgorod, Russia (in Russian).
10. I.M. Neklyudov, V.B. Yuferov,
L.G. Sorokovoj, N.A. Kosik, N.D. Rybal’chenko,
V.G. Artyukh, O.S. Druj, E.I. Skibenko,
Yu.V. Kholod, V.F. Malets,
N.V. Kamyshanchenko, V.A. Belenko. Change of
the structure and hardness of the X18N10T steel
surface under action of high-power pulse electron
beams. Proc. of 4th International Symposium
“Vacuum technologies and equipment”. MSVTO,
April 23-27, 2001, Kharkov.
120
introduction
Description of installations
References
|