Non-linear self-acceleration of electrons emitted by plasma cathode

A non-linear non-stationary analytical theory of diode gap overlap by electrons emitted from the plasma cathode is represented. The fact of the non-linear self-acceleration at the electron flow front is confirmed.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Вопросы атомной науки и техники
Datum:2002
Hauptverfasser: Pashchenko, A.V., Pashchenko, I.A.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2002
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/80128
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Non-linear self-acceleration of electrons emitted by plasma cathode / A.V. Pashchenko, I.A. Pashchenko // Вопросы атомной науки и техники. — 2002. — № 2. — С. 95-96. — Бібліогр.: 1 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-80128
record_format dspace
spelling Pashchenko, A.V.
Pashchenko, I.A.
2015-04-12T06:52:10Z
2015-04-12T06:52:10Z
2002
Non-linear self-acceleration of electrons emitted by plasma cathode / A.V. Pashchenko, I.A. Pashchenko // Вопросы атомной науки и техники. — 2002. — № 2. — С. 95-96. — Бібліогр.: 1 назв. — англ.
1562-6016
PACS: 52.25.Sw, 52.35.Py, 52.60+h
https://nasplib.isofts.kiev.ua/handle/123456789/80128
A non-linear non-stationary analytical theory of diode gap overlap by electrons emitted from the plasma cathode is represented. The fact of the non-linear self-acceleration at the electron flow front is confirmed.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Theory and technics of particle acceleration
Non-linear self-acceleration of electrons emitted by plasma cathode
Нелинейное самоускорение электронов, эмитированных плазменным катодом
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Non-linear self-acceleration of electrons emitted by plasma cathode
spellingShingle Non-linear self-acceleration of electrons emitted by plasma cathode
Pashchenko, A.V.
Pashchenko, I.A.
Theory and technics of particle acceleration
title_short Non-linear self-acceleration of electrons emitted by plasma cathode
title_full Non-linear self-acceleration of electrons emitted by plasma cathode
title_fullStr Non-linear self-acceleration of electrons emitted by plasma cathode
title_full_unstemmed Non-linear self-acceleration of electrons emitted by plasma cathode
title_sort non-linear self-acceleration of electrons emitted by plasma cathode
author Pashchenko, A.V.
Pashchenko, I.A.
author_facet Pashchenko, A.V.
Pashchenko, I.A.
topic Theory and technics of particle acceleration
topic_facet Theory and technics of particle acceleration
publishDate 2002
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Нелинейное самоускорение электронов, эмитированных плазменным катодом
description A non-linear non-stationary analytical theory of diode gap overlap by electrons emitted from the plasma cathode is represented. The fact of the non-linear self-acceleration at the electron flow front is confirmed.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/80128
citation_txt Non-linear self-acceleration of electrons emitted by plasma cathode / A.V. Pashchenko, I.A. Pashchenko // Вопросы атомной науки и техники. — 2002. — № 2. — С. 95-96. — Бібліогр.: 1 назв. — англ.
work_keys_str_mv AT pashchenkoav nonlinearselfaccelerationofelectronsemittedbyplasmacathode
AT pashchenkoia nonlinearselfaccelerationofelectronsemittedbyplasmacathode
AT pashchenkoav nelineinoesamouskorenieélektronovémitirovannyhplazmennymkatodom
AT pashchenkoia nelineinoesamouskorenieélektronovémitirovannyhplazmennymkatodom
first_indexed 2025-11-26T00:17:40Z
last_indexed 2025-11-26T00:17:40Z
_version_ 1850599212570378240
fulltext NON-LINEAR SELF-ACCELERATION OF ELECTRONS EMITTED BY PLASMA CATHODE A.V. Pashchenko, I.A. Pashchenko National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine e-mail: paschenko@kipt.kharkov.ua A non-linear non-stationary analytical theory of diode gap overlap by electrons emitted from the plasma cathode is represented. The fact of the non-linear self-acceleration at the electron flow front is confirmed. PACS: 52.25.Sw, 52.35.Py, 52.60+h 1. INTRODUCTION Electron self-acceleration takes place in a cathode- anode interval during electron emission from a metal cathode [1]. This effect provides the appearance of the corresponding additional source of current in the equivalent electrical circuit of the diode. It is interesting to ascertain as this effect is modified in case of electron emission from a plasma cathode. This problem is investigated in the present report. 2. THEORY Let us consider a plasma layer with a thickness of d in the Cartesian coordinate system 0XYZ placed between two conducting plates x=0 and x=l in the interval (0,d), i.e. d<1. Since a moment t=0 the plates x=0 and x=l were found under potentials ϕ(0)=0 and ϕ(l)=ϕ0(t)>0, respectively. So at t>0 an external electric field acts on plasma. Then to a moment t not so greater than t=0 electrons are displaced from the initial position so that the whole region (0,l) is divided on four physical regions: a) (0,k) - ions; b) (k,d) - plasma; c) (d,m) - electrons; d) (m,l) - vacuum. Let us consider an electrodynamical problem for each of these regions with taking into account the non-linear electron movement, make a joining of fields and potentials and satisfy their boundary conditions. Let us start to proceed from the electron movement equation, continuity equation and Poisson equation which in the Lagrange variables a,t, where a is the initial coordinate, t is the time, have a form: Em e t −=∂ υ∂ , (1) ( )aCa xn 1=∂ ∂ , (2) ( ) a xnnea E i ∂ ∂π∂ ∂ −= 4 , (3) ( )ann ii = , (4) where e and m are the charge value and the mass of electron. Let us consider that at t=0 and x=a: υ=0, ni(a)=n0. Then C1(a)=n0 and from equation (3) we have ( ) ( ),4 0 taxenE ξπ +−= (5) where ξ(t) is the integral constant. We have from equation (1): ( ),tax θ+= (6) where function θ(t) satisfies the equation ( ) ,02 2 =++′′ tm e pt ξθωθ (7) and besides θ|t=0=0, θ'|t=0=0. Then we found that in this region ( ) ( )[ ],1 tHxe m +−′′= θθϕ (8) where H1(t) is the integral constant. In this region the electron movement is described by the set of equations ( )        −= = −= enx E Cxn Em e t π∂ ∂ ττ∂ ∂ ∂ υ∂ 4 2 , (9) where τ is the time of passing by an electron of the coordinate x=d. The integration of the Poisson equation from (9) has shown that the electric field represents a sum of function t and function τ in this region: ( ) ( )tCdCeE 3 0 24 +−= ∫ τ ξξπ . (10) It permits to execute the integration of movement equation in quadratures: ( ) ( )     +−−= ∫ tCdCem e t x i 30 22 2 4 τ ξξπ ∂ ∂ , (11) ( ) ( ) ( ) ( )∫ ∫ +− −−  = ′ t p CdC m e tdCn x τ τ τξξ τξξω ∂ ∂ , t 43 0 2 0 2 (12) ( ) ( ) ( ) ( ) ( ) ( ). 2 431 2 0 2 0 2 5 1 ττξξξ τξξ ω τ τ ξ τ τ −+− −−    += ∫ ∫ ∫ tCdCdm e tdCnCx t p (13) We find the integration constants from conditions at t=τ: ( ) ( ) ,,5 dtxC t =τ=τ τ= (14) ( ) ( ) ( ) ( ) τ τθ ∂ ∂υ ∂ τ∂τ ττ d d t tax t txC dxtt ==== === ,, 4 . (15) PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2002, № 2. Series: Nuclear Physics Investigations (40), p. 95-96. 95 Now we can find the function C2(τ) incoming into the continuity equation in (9): .)(2 τττ τ∂ ∂ τ∂ ∂ τ∂ ∂τ ==== === tdxtt xnxnxnC Since n|x=d=n0 and ∂x/∂τ|t=τ=−C4(τ)+dC5(τ)/dτ=−θ'τ(τ), ( ) ( ).02 τθτ τ′−= nC (15') Joining of electric fields at the point x=d leads to the formula ( ) ( ) ( )tente mtC θπθ 03 4−′′−= . (16) Then taking into account that ( ) ( )     −+′−= 21 2 2 τωτθ∂ ∂ t t x p , (17) we can find the potential in the region (d,m) ( ) ( ) ( )( ) .22, 22 0 τωτ −+= tntn p (18) It can be seen from formula (18) that the electron density decreases with time as we move off from the plasma layer boundary x=d. The second boundary coordinate of the plasma layer is determined by the formula, getting from (13): ( ) ( ) ( )∫ ∫++== t p ddtdtxm 0 01 2 1,0 ξ ξξθξωθ . (19) It can be seen that the electron coordinate changing at layer boundary differs from the corresponding change in the plasma region at the value ( )∫ ∫ t p dd 0 01 2 1ξ ξξθξω that confirms the electron layer propagation. Consideration of the Poisson equation ∂E3/∂x=0, joining of fields and potentials in the point x=m, the connection to boundary condition on the border x=l leads to the formulas: ( ) ( ) ( ),/, 2 3 θωθ pemtxE +′′−= (20) ( ) ( ) ( )( ) ( ),, 0 2 3 txlemtx p ϕθωθϕ +−+′′−= (21) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]∫ −+′+ +−−−′′−= t p p dt dlltmetH 0 22 2 01 21 ξξξθξθω θωθθϕ , (22) where ϕ0(t) is the potential of anode x=l. A positively charged layer completed by heavy stationary ions is appeared near the cathode after beginning of action of the external potential ϕ0(t). The ion density is n0. Solving of the Poisson equation ∂E1/∂ x=4πen0 and joining of electrical fields and potentials in the point x=k give us: ( )txenE ξπ += 01 4 , (23) ( ) xtxen ξπϕ −−= 2 01 2 , (24) ( ) .222 1 θωθθ ptH +′′= (25) 3. BASIC PROBLEM EQUATION AND RESULTS Equating expressions (22) and (25), we receive the equation for determination of non-linear electron displacement in the plasma layer θ: ( ) ( ) ( ) ( ) ( ) ∫ =−′−−−+ T dTT dT d 0 2 02 2 0 2 1 ξξξρξρφρηρ , (26) where ρ≡θ/l, T≡ωpt, η≡d/l, ( ) ( )( ) ( ) .22 00 lmteT pωϕφ ≡ The equation (26) is the head result of present research. The numerical solution of this equation was performed using the function ( ) ( ).10 TeT αγφ −−= (27) The concrete values of parameters η and γ are very important for result. Estimations give us the value 10-3 for γ under l≈1 sm, n0=1012 sm-3 and potential amplitude | ϕ0(t)|≈103 V. The level of effect on plasma can be characterized by the ratio ρ/η: the effect is strong for ρ/ η≤1, and the effect is low for ρ/η<<1. Fig. 1-3 demonstrate the numerical results for γ =0,025, η=0,5. In particular, Fig. 2 shows the velocity of one electron corresponding. This fact takes place due to the collective acceleration of electrons at the electron flow front. 0.00 0.04 0.08 0.12 0 1 2 3 4 5 6T Fig. 1. Electron displacement in a plasma layer, ρ. 0.0 0.1 0.2 0.3 0 1 2 3 4 5 6T I II Fig. 2. Curve I - velocity of electron flow front, curve II - velocity of one electron under the influence of Ф0(T) for the case a=d 0.4 0.6 0.8 1.0 1.2 0 1 2 3 4 5 6T m Fig. 3. The coordinate of electron flow front 4. CONCLUSION In this report we create a strong non-linear non- stationary analytical theory of diode gap overlap by electrons emitted from the plasma cathode. The fact of the non-linear self-acceleration at the electron flow front is confirmed. REFERENCES 1. A.V. Pashchenko, V.E. Novikov, Y.V. Tkach. The phenomenon of non-linear cathode-emitted particle self acceleration. 10th IEEE International Pulsed Power Conference, Albuquerque, New Mexico, 1995, p. 852-856. 96 REFERENCES