Smooth trajectories on toroidal manifolds

In the recent paper trajectories of the natural motion on toroidal manifolds are considered. It is represented an information dealing with description of the rotation metric at the different methods of toroidal analytical fixing, description of geodesic integrals, links between global motion invaria...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Вопросы атомной науки и техники
Datum:2002
1. Verfasser: Romanov, S.S.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2002
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/80132
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Smooth trajectories on toroidal manifolds / S.S. Romanov // Вопросы атомной науки и техники. — 2002. — № 2. — С. 112-115. — Бібліогр.: 13 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-80132
record_format dspace
spelling Romanov, S.S.
2015-04-12T06:58:36Z
2015-04-12T06:58:36Z
2002
Smooth trajectories on toroidal manifolds / S.S. Romanov // Вопросы атомной науки и техники. — 2002. — № 2. — С. 112-115. — Бібліогр.: 13 назв. — англ.
1562-6016
PACS: 02. 40. – Hw, 52.20.Dq
https://nasplib.isofts.kiev.ua/handle/123456789/80132
In the recent paper trajectories of the natural motion on toroidal manifolds are considered. It is represented an information dealing with description of the rotation metric at the different methods of toroidal analytical fixing, description of geodesic integrals, links between global motion invariants of the trajectory with the toroidal manifolds parameters. Analytical representations of geodesics at the different values of the global invariants are given.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Theory and technics of particle acceleration
Smooth trajectories on toroidal manifolds
Гладкие траектории на тороидальных многообразиях
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Smooth trajectories on toroidal manifolds
spellingShingle Smooth trajectories on toroidal manifolds
Romanov, S.S.
Theory and technics of particle acceleration
title_short Smooth trajectories on toroidal manifolds
title_full Smooth trajectories on toroidal manifolds
title_fullStr Smooth trajectories on toroidal manifolds
title_full_unstemmed Smooth trajectories on toroidal manifolds
title_sort smooth trajectories on toroidal manifolds
author Romanov, S.S.
author_facet Romanov, S.S.
topic Theory and technics of particle acceleration
topic_facet Theory and technics of particle acceleration
publishDate 2002
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Гладкие траектории на тороидальных многообразиях
description In the recent paper trajectories of the natural motion on toroidal manifolds are considered. It is represented an information dealing with description of the rotation metric at the different methods of toroidal analytical fixing, description of geodesic integrals, links between global motion invariants of the trajectory with the toroidal manifolds parameters. Analytical representations of geodesics at the different values of the global invariants are given.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/80132
citation_txt Smooth trajectories on toroidal manifolds / S.S. Romanov // Вопросы атомной науки и техники. — 2002. — № 2. — С. 112-115. — Бібліогр.: 13 назв. — англ.
work_keys_str_mv AT romanovss smoothtrajectoriesontoroidalmanifolds
AT romanovss gladkietraektoriinatoroidalʹnyhmnogoobraziâh
first_indexed 2025-12-07T15:25:51Z
last_indexed 2025-12-07T15:25:51Z
_version_ 1850863676667461632