Photonuclear method of production Cu-67

The efficiently separation of ⁶⁷Cu is achieved by using diantipyrylpropylmethane (DАPPМ). Experimental separation of ⁶⁷Cu from sulphuric solution (1 mol./L) of zinc (2 mol./L) with addition potassium iodide (0.1 mol./L) is realized with help DAPPM (0.02 mol./L), which dissolve in chloroform. The 84...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2014
Hauptverfasser: Aizatskyi, N.I., Dikiy, N.P., Dovbnya, A.N., Dolzhek, M.A., Lyashko, Yu.V., Medvedeva, E.P., Medvedev, D.V.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2014
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/80281
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Photonuclear method of production Cu-67 / N.I. Aizatskyi, N.P. Dikiy, A.N. Dovbnya, M.A. Dolzhek, Yu.V. Lyashko, E.P. Medvedeva, D.V. Medvedev // Вопросы атомной науки и техники. — 2014. — № 3. — С. 182-185. — Бібліогр.: 16 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-80281
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-802812025-02-10T01:32:52Z Photonuclear method of production Cu-67 Aizatskyi, N.I. Dikiy, N.P. Dovbnya, A.N. Dolzhek, M.A. Lyashko, Yu.V. Medvedeva, E.P. Medvedev, D.V. Применение ускорителей в радиационных технологиях The efficiently separation of ⁶⁷Cu is achieved by using diantipyrylpropylmethane (DАPPМ). Experimental separation of ⁶⁷Cu from sulphuric solution (1 mol./L) of zinc (2 mol./L) with addition potassium iodide (0.1 mol./L) is realized with help DAPPM (0.02 mol./L), which dissolve in chloroform. The 84.4% ⁶⁷Сu was extracted from water phase of ZnSO₄ into organic phase (solution DAPPM in chloroform). The ⁶⁷Cu remainder in organic phase is 4.6%. Effective extraction of protonated forms of reagent and ionic associate of metal+halide was realized by means of antipyrin forms in acid halide solution. The decrease of acidity of a water phase is necessary for effective reextraction. Re-extraction was realised by means of consecutive washing of organic phase (DAPPM in chloroform) by means of distilled water. Some amount of ZnSO₄ in process of extraction gets in organic phase that causes a low level re-extraction in first two tests. These tests re-extraction have low values рН. Re-extraction ⁶⁷Cu from solution DAPPM in chloroform is carried out consistently four times by distilled water. The activity of ⁶⁷Cu in third and fourth re-extraction tests was 72.7%. Экстракция диантипирилпропилметаном (ДАППМ) позволяет эффективно выделять ⁶⁷Cu. Реализовано экспериментальное выделение ⁶⁷Cu из сернокислого раствора (1 моль/л) цинка (2 моль/л) с добавлением йодистого калия (0,1 моль/л) при помощи ДАППМ (0,02 моль/л), растворенного в хлороформе. При экстракции ⁶⁷Сu из водной фазы ZnSO₄ переходит в органическую фазу (раствор ДАППМ в хлороформе) 84,4% ⁶⁷Сu. В органической фазе остается 4,6% ⁶⁷Сu. Производные антипирина образуют в кислых галогенидных растворах хорошо экстрагирующиеся ионные ассоциаты металл + галогенидного аниона и протонированной формы реагента. Поэтому для эффективной реэкстракции необходимо снижение кислотности водной фазы, что и реализуется при последовательных перемешиваниях органической фазы (ДАППМ в хлороформе) с дистиллированной водой. Некоторое количество ZnSO₄ в процессе экстракции попадает в органическую фазу, что обуславливает низкую степень реэкстракции в первых двух пробах. Эти пробы реэкстракции имеют низкие значения рН. Реэкстракцию ⁶⁷Сu из раствора ДАППМ в хлороформе проводили последовательно четыре раза дистиллированной водой. В третью и четвертую пробы реэкстрагировалось 72,7% активности ⁶⁷Сu. Екстракція діантіпірілпропілметаном (ДАППМ) дозволяє ефективно виділяти ⁶⁷Cu. Реалізовано експериментальне виділення ⁶⁷Cu з сірчанокислого розчину (1 моль/л) цинку (2 моль/л) з додаванням йодистого калію (0,1 моль/л) за допомогою ДАППМ (0,02 моль/л), розчиненого в хлороформі. При екстракції ⁶⁷Cu з водної фази ZnSO₄ переходить в органічну фазу (розчин ДАППМ в хлороформі) 84,4% ⁶⁷Cu. У органічній фазі залишається 4,6% ⁶⁷Cu. Похідні антипірину утворюють у кислих галогенідних розчинах добре екстрагуючі іонні асоціати метал + галогенідні аніони і протоновану форми реагенту. Тому для ефективної реекстракції необхідне зниження кислотності водної фази, що і реалізується при послідовних перемішуваннях органічної фази (ДАППМ в хлороформі) з дистильованою водою. Деяка кількість ZnSO₄ в процесі екстракції потрапляє в органічну фазу, що обумовлює низьку ступінь реекстракції в перших двох пробах. Ці проби реекстракції мають низькі значення рН. Реекстракції ⁶⁷Cu з розчину ДАППМ у хлороформі проводили послідовно чотири рази дистильованою водою. У третю і четверту проби реекстрагувалося 72,7% активності ⁶⁷Cu 2014 Article Photonuclear method of production Cu-67 / N.I. Aizatskyi, N.P. Dikiy, A.N. Dovbnya, M.A. Dolzhek, Yu.V. Lyashko, E.P. Medvedeva, D.V. Medvedev // Вопросы атомной науки и техники. — 2014. — № 3. — С. 182-185. — Бібліогр.: 16 назв. — англ. 1562-6016 PACS: 28.60.+s; 87.53.Jw https://nasplib.isofts.kiev.ua/handle/123456789/80281 en Вопросы атомной науки и техники application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Применение ускорителей в радиационных технологиях
Применение ускорителей в радиационных технологиях
spellingShingle Применение ускорителей в радиационных технологиях
Применение ускорителей в радиационных технологиях
Aizatskyi, N.I.
Dikiy, N.P.
Dovbnya, A.N.
Dolzhek, M.A.
Lyashko, Yu.V.
Medvedeva, E.P.
Medvedev, D.V.
Photonuclear method of production Cu-67
Вопросы атомной науки и техники
description The efficiently separation of ⁶⁷Cu is achieved by using diantipyrylpropylmethane (DАPPМ). Experimental separation of ⁶⁷Cu from sulphuric solution (1 mol./L) of zinc (2 mol./L) with addition potassium iodide (0.1 mol./L) is realized with help DAPPM (0.02 mol./L), which dissolve in chloroform. The 84.4% ⁶⁷Сu was extracted from water phase of ZnSO₄ into organic phase (solution DAPPM in chloroform). The ⁶⁷Cu remainder in organic phase is 4.6%. Effective extraction of protonated forms of reagent and ionic associate of metal+halide was realized by means of antipyrin forms in acid halide solution. The decrease of acidity of a water phase is necessary for effective reextraction. Re-extraction was realised by means of consecutive washing of organic phase (DAPPM in chloroform) by means of distilled water. Some amount of ZnSO₄ in process of extraction gets in organic phase that causes a low level re-extraction in first two tests. These tests re-extraction have low values рН. Re-extraction ⁶⁷Cu from solution DAPPM in chloroform is carried out consistently four times by distilled water. The activity of ⁶⁷Cu in third and fourth re-extraction tests was 72.7%.
format Article
author Aizatskyi, N.I.
Dikiy, N.P.
Dovbnya, A.N.
Dolzhek, M.A.
Lyashko, Yu.V.
Medvedeva, E.P.
Medvedev, D.V.
author_facet Aizatskyi, N.I.
Dikiy, N.P.
Dovbnya, A.N.
Dolzhek, M.A.
Lyashko, Yu.V.
Medvedeva, E.P.
Medvedev, D.V.
author_sort Aizatskyi, N.I.
title Photonuclear method of production Cu-67
title_short Photonuclear method of production Cu-67
title_full Photonuclear method of production Cu-67
title_fullStr Photonuclear method of production Cu-67
title_full_unstemmed Photonuclear method of production Cu-67
title_sort photonuclear method of production cu-67
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2014
topic_facet Применение ускорителей в радиационных технологиях
url https://nasplib.isofts.kiev.ua/handle/123456789/80281
citation_txt Photonuclear method of production Cu-67 / N.I. Aizatskyi, N.P. Dikiy, A.N. Dovbnya, M.A. Dolzhek, Yu.V. Lyashko, E.P. Medvedeva, D.V. Medvedev // Вопросы атомной науки и техники. — 2014. — № 3. — С. 182-185. — Бібліогр.: 16 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT aizatskyini photonuclearmethodofproductioncu67
AT dikiynp photonuclearmethodofproductioncu67
AT dovbnyaan photonuclearmethodofproductioncu67
AT dolzhekma photonuclearmethodofproductioncu67
AT lyashkoyuv photonuclearmethodofproductioncu67
AT medvedevaep photonuclearmethodofproductioncu67
AT medvedevdv photonuclearmethodofproductioncu67
first_indexed 2025-12-02T12:13:51Z
last_indexed 2025-12-02T12:13:51Z
_version_ 1850398612309147648
fulltext ISSN 1562-6016. ВАНТ. 2014. №3(91) 182 PHOTONUCLEAR METHOD OF PRODUCTION Cu-67 N.I. Aizatskyi, N.P. Dikiy, A.N. Dovbnya, M.A. Dolzhek, Yu.V. Lyashko, E.P. Medvedeva, D.V. Medvedev National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine E-mail: ndikiy@kipt.kharkov.ua The efficiently separation of 67Cu is achieved by using diantipyrylpropylmethane (DАPPМ). Experimental sepa- ration of 67Cu from sulphuric solution (1 mol./L) of zinc (2 mol./L) with addition potassium iodide (0.1 mol./L) is realized with help DAPPM (0.02 mol./L), which dissolve in chloroform. The 84.4% 67Сu was extracted from water phase of ZnSO4 into organic phase (solution DAPPM in chloroform). The 67Cu remainder in organic phase is 4.6%. Effective extraction of protonated forms of reagent and ionic associate of metal+halide was realized by means of antipyrin forms in acid halide solution. The decrease of acidity of a water phase is necessary for effective re- extraction. Re-extraction was realised by means of consecutive washing of organic phase (DAPPM in chloroform) by means of distilled water. Some amount of ZnSO4 in process of extraction gets in organic phase that causes a low level re-extraction in first two tests. These tests re-extraction have low values рН. Re-extraction 67Cu from solution DAPPM in chloroform is carried out consistently four times by distilled water. The activity of 67Cu in third and fourth re-extraction tests was 72.7%. PACS: 28.60.+s; 87.53.Jw INTRODUCTION Copper is the irreplaceable microelement necessary for normal vital functions of the person. Copper is main- ly involved in redox reactions throughout the body, but also plays a role in iron transportation in blood plasma. Copper is part of hormones and influences growth, de- velopment, reproduction, an exchange, processes of formation of haemoglobin, phagocytic activity of leuko- cytes. 67Cu is one of the most promising isotopes for radio- immunotherapy. The half-value period of 67Cu is 61.5 h and it well matched to the residence time of a typical antibody on the tumour. 67Cu emit β-particles as well as a moderate abundance of 93 and 184 keV gamma rays. These gamma rays permit radiation dosimetry to be pre- dicted from the information obtained from quantitative imaging studies on pretherapy doses of 67Cu. This pretherapy imaging and kinetics, followed by similar pharmacokinetics of the actual therapy doses, allows treatment planning and on-going verification of that planning with actual dosimetric information on the radi- ation delivered. Various ways of use of 67Cu for therapy and diag- nostics of cancer diseases are used. For example ethyl- glyoxal bis(thiosemicarbazone) has potential utility as radiopharmaceutical with the various isotopes of copper [1]. 64Cu TETA-Octreotide is a chelate that has been shown to bind to the somatostatin receptor [2]. CB- TE2A a stable chelation system for 67Cu was incorpo- rated with Bombesin analogs for in vitro and in vivo studies of prostate cancer [3]. 67Cu-ATSM (diacetyl-bis (N4-methylthiosemicarbazone)) has been shown to in- crease the survival time of tumor-bearing animals with no acute toxicity [4]. 67Cu is widely used in radioim- munoassay therapy and in early diagnosis and treatment of lung cancer. For this purpose the unicellular suspen- sion was treated by solution 5, 10, 15, 20-tetrakis (4- carboxyphenyl) porphine for a time sufficient to sub- stantially capture by malignant cells. The treated cell suspension was irradiated by UV irradiation. Diagnosis of malignant lung cells realize by the number of fluo- rescent cells. The localization of malignant process of lung in the whole organism was performed by means of introducing in a patient's blood of porphyrin derivatives with subsequent analysis of the image produced in the emitted gamma radiation. In the case of treatment of the patient is administered complex 5, 10, 15, 20-tetrakis (4-carboxyphenyl)-67Cu-(II) porphine in the form of an aerosol. Low cost and high specific activity is necessary conditions of wide use of 67Cu in nuclear medicine. NSC KIPT is developing a process for production of 67Cu using an electron linac. The two most significant criteria are the specific activity of the 67Cu and the ab- sence of other metals that could compete with the chelat- ing agent that medical researchers plan to use to target the delivery of the 67Cu. Moreover yield and waste disposal requirements necessitate the use of an isotopically en- riched target, which must be recovered and reused. The purpose of the present work is development of method of production of 67Cu with low cost, with high specific activity and absence of metal impurity in solution. RESULTS AND DISCUSSION One of effective ways of separation of 67Cu is a method internal electrolysis, which allows receiving pure copper without the carrier [5]. Recently the 67Cu finds more and more wide use for treatment of tumours [6]. The significant number of articles [7 - 13] is devot- ed to development of methods of synthesis 67Cu. Most frequently at manufacture of isotopes of copper is used extraction and electrochemical sedimentation. Extraction by organic reagents allows realizing au- tomation of the separation of the radioactive isotope. Extraction by acetone [7] provides the attitude of distri- bution approximately 100 that does not satisfy to condi- tions for further use 67Cu as pharmaceutical production. Using diantipyrylpropylmethane provides a distribution coefficient more than 103 copper and about 10-4 for zinc, which corresponds to a ratio of zinc for initial and final solution 10-7 [14 - 15]. Metal zinc, zinc oxide from closed Joint-stock com- pany "OEZ" “VladMiVa", chemically pure sulfuric ac- id, pure hydrochloric acid, chemically pure chloroform, http://en.wikipedia.org/wiki/Redox ISSN 1562-6016. ВАНТ. 2014. №3(91) 183 chemically pure (PDS 2930-0002), diantipyrylpropyl- methane (DAPPM) (С26Н30N4О2) of analytical grade, dithizone (diphenylthiocarbazone, C13H11N4S), reagent grade, TU 6-09-07-1684, Pyrex glass, Viton tubing (Cole Parmer Instrument, Vernon Hills), connecting silicone a tube had been used at fulfillment of investiga- tions. Series of experiments about dissolution of zinc metal and zinc oxide was carried out. This procedure is given special attention, because dissolving the irradiated zinc should take place in the shortest possible time and in a special container made of glass, not containing in the structure of that element. This procedure is being per- formed in a hot cell and should be as simple as possible. The sample of metal zinc (998 mg) was placed in a bowl with a solution of hydrochloric acid (HCl) which was diluted (1:1). After dilution of zinc the hydrochloric acid was evaporated with addition of 0.6 ml of sulfuric acid to a final volume of aqueous phase of Н2SO4 with concen- tration 1…2 mol./L of zinc. Solution was heated until vapours of sulfuric acid and complete dilution of sample. The resulting solution has a transparent lemon colour. For simplification of procedure of dissolution was used zinc oxide (manufactured by JSC "OEZ" “VladMiVa") in an amount of 8 g. The 7 ml of concen- trate sulfuric acid was added in a bowl and was added ~20 ml of distilled water. Heating of a bowl carried out before full dissolution of the zinc sample. In order to enhance the dissolution of zinc in bowl was added a 50% solution of hydrogen peroxide. The most suitable concentration of hydrogen ions for dilution of zinc is in the range from pH 2 to 3. In the case when metallic zinc after adding sulfuric acid is not completely dissolved it was necessary to add to a cold solution of hydrogen peroxide. Then a mix of solutions in addition warmed up. For obtaining isotope 67Cu the technique of extrac- tion from iodide system is developed. In this case potas- sium iodide is being entered into a solution of sulfuric acid. In sour iodide solutions the copper is present at a degree of oxidation (+1), forming strong anionic com- plexes CuI2¯. Their stability is much more than of zinc (ІІ). Therefore in this system the greatest contrast is being observed at extraction of copper concerning zinc. Optimum pH for the separation of copper from the zinc is equal to 1 mol./L for Н2SО4 and 0.1 mol./L for KI. In these conditions the copper extraction was realized in form of ionic associate CuI2¯ with protonate form of reagent LH+. In less sour area the significant contribu- tion of copper as introduction complex creates difficul- ties in re-extraction. The important condition of extraction of copper is the ratio of concentration of reagent L and iodine-ions. Extraction is optimum at 2-3 multiple surplus of I¯ in relation to L. In these conditions K copper exceeds 103, and for zinc it is less 10-3. Falling of extraction of cop- per at [L]>[I−] is caused by destruction of iodine com- plex of copper by reagent surplus: CuI2ˉ + 2LH+ → Cu+ + LHI. (1) к1 к2 к3 к4 к5 к6 к7 condenser extractor, CHCl3, DAPPM evaporation bowl 6 heater Sol. ZnSO4, H2SO4, КI Re-extractor, DAPPM Н2О peristaltic pump peristaltic pump compressor Assembly of solution heater Н2О Н2О 1 2 3 4 5 Solution KI Solution 67Cu 1 sample re-extraction Н2SO4, Н2O2, H2O CHCl3, DAPPM tap 1,2 tap 3,4 waste Zn, Н2SO4 waste CHCl3, DAPPM tap 5 control panel 1. pomps (к1-к7) 2. 2 heater 3. instrument illumination 4. 2 peristaltic pump Waste Н2О Fig. 1. The scheme of installation Reduction of copper extraction at [L]<[I−] is caused by deficiency of a reagent owing to his linkage in ionic associate with an iodine-ion: LHICuI2 + I → LHI + CuI2¯. (2) At significant concentration of zinc (to 2 mol./L) the factor of distribution Kp of copper does not change. Also down to concentration of copper 10−3 mol./L Kp of copper remains constant. Essential feature of use of the given system is simplicity re-extraction copper. De- crease of acidity of an organic phase by water results to effective re-extraction copper. The sulfuric water phase with concentration of a sulfuric acid 1 mol./l, of zinc 2 mol./l and of potassium iodide 0.1 mol./l was located in separating funnel (2) (Fig. 1). In extraction column ISSN 1562-6016. ВАНТ. 2014. №3(91) 184 (1) solution DAPPM in chloroform with concentration 0.02 mol./L was located. Volumes of chloroform and a water phase were equal (130 ml) and allowed to dissolu- tion 20 g of metal zinc. Extraction of copper-67 was carried out by pass of water phase through a capillary extraction column with the help peristaltic pump. Speed of swapping of a water phase is 13 ml/minute. The wa- ter passed through solution DAPPM in chloroform and again arrives in separating funnel (2). Time of extrac- tion of copper-67 was 20 minutes. After the termination of extraction the solution DAPPM in chloroform was transported in extraction column (3). In separating fun- nel (4) was poured 130 ml of distilled water and was included peristaltic pump (7), which pumped water through a capillary extraction column (3) within 10 minutes. In this case the water rose upwards and ar- rived in separating funnel (5). The first test of a contact mix lowers acidity of a solution up to рН=2, that creates necessary conditions about acidity for transition of cop- per-67 in the subsequent re-extracts. The first test of a contact mix merges in a glass for waste products. Then in extraction column (3) 130 ml of distilled water are again added and the cycle re-extraction of copper-67 is carried out. After that re-extract from separating funnel (4) with the help peristaltic pump (10) was pumped over in a flask (9). In a result it is carried out four consecu- tive cycles re-extraction, which transported in a contact solution more than 90% of copper-67. The isotope 67Cu allows carry out therapy of many cancer diseases. Extraction diantipyrylpropylmethane (DAPPM) allows to effectively separation of 67Cu. Ex- perimental separation 67Cu from sulfuric solution (1 mol./L) zinc (2 mol./L) with addition potassium io- dide (0.1 mol./L) is realized with help (DAPPM (0.02 mol./L), dissolved in chloroform. At extraction of 67Cu from water phase ZnSO4 passes in an organic phase (solution DAPPM in chloroform) 84.4% 67Сu (Table). Activity and the content of impurity in re-extract № sample Yield 67Сu, % рН solution re- extract The share of activity 65Zn in re-extract Content Zn in re- extract, µg/ml Content Cu in re- extract, µg/ml 1 0.7 2 < 2⋅10−4 20.8 0.0757 2 0.8 2.5 < 6⋅10−5 3.92 0.132 3 33.7 4.5 < 2⋅10−5 0.45 0.0052 4 39.0 5 < 2⋅10−5 0.05 0.0045 5* 5.6 7 < 2⋅10−5 − − 6** 4.6 − < 2⋅10−5 − − 5* − solution NaOH for quantitative re-extraction; 6** − solution DAPPM in CHCl3 after re-extraction. The activity of 67Cu in organic phase is 4.6%. Deriv- atives of antipyrine are producing in acidic halide solu- tions ion associates well extractable metal-halide anions and the protonated forms of the reagent. Therefore, the basic method of re-extraction is a reduction in acidity of the aqueous phase by mixing the organic phase with an alkaline solution or water. The destruction of the copper iodide is achieved by the introduction of excess reagent DAPPM. Some amount ZnSO4 in process extraction gets in an organic phase that causes a low degree re- extraction in first two tests. These tests re-extraction have low values рН. The activity of initial solution ZnSO4, of organic phase and of tests re-extract was measured by Ge(Li)- detector in volume of 40 cm3 with the power resolution 3.2 by 1332 keV (Fig. 2). Re-extraction of 67Сu from solution DAPPM in chloroform was carried out consistently four times by distilled water (see Table). In third and fourth tests were re-extracted 72.7% of activity 67Сu (Fig. 3). The fifth re- extraction of 67Сu was carried out by quantitatively a solution of caustic soda (рН=7) and its activity was 5.6% from initial activity of 67Сu. 200 400 600 800 1000 1200 1400 101 102 103 104 67Cu 93 keV co un ts number channel 65Zn 1115 keV 511 keV 67Cu 184 keV Fig. 2. The spectrum of solution after irradiation of Zn 200 400 600 800 1000 1200 1400 101 102 103 104 105 67Cu 394 keV 67Cu 300 keV 67Cu 93 keV 67Cu 184 keV 511 keV 65Zn 1115 keV co un ts number channel Fig. 3. The spectrum of solution after extraction of 67Cu Use of 67Cu for radio immune therapy shows the cer- tain requirements about the content of zinc in re-extract. The content of zinc in re-extract of copper should not exceed a level of copper. Therefore for the further downturn of the content of zinc in re-extract is supposed to use silica gel as an absorber [16]. Sorption of zinc by silica gel is realized at рН=7. Therefore pass of re- extraction through activated silica gel will allow reach the set content of zinc in a preparation of 67Cu which can be used for radio immune therapy. Research of in- fluence of masking of zinc for increase in factors of distribution of copper [13] and reduction of factor of distribution for zinc is supposed also. ISSN 1562-6016. ВАНТ. 2014. №3(91) 185 CONCLUSIONS 1. The model of installation for extraction of copper-67 with use diantipyrylpropylmethane is created and tested. 2. The ratio of the content of zinc in re-extract in rela- tion to initial zinc 3⋅10−6 is received. 3. The extraction of copper is achieved at level of 90%. REFERENCES 1. M.A. Green, C.J. Mathia, L.R. Willi, et al. Assess- ment of Cu-ETS as a PET radiopharmaceutical for evaluation of regional renal perfusion // Nuclear Medicine and Biology. 2007, №3, p. 247-255. 2. L.A. Bass, M. Wang, M.J. Welch, et al. In Vivo Transchelation of Copper-64 from TETA-Octreotide to Superoxide Dismutase in Rat Liver // Bioconju- gate Chemistry. 2000, p. 527-532. 3. J.J. Parry, R. Andrews, B.E. Rogers. MicroPET im- aging of breast cancer using radiolabeled bombesin analogs targeting the gastrin-releasing peptide recep- tor // Springer. 2007, p.175-183. 4. J.S. Lewis, R. Laforest, T.L. Buettner, et al. Copper- 64-diacetyl-bis(N4-methylthiosemicarbazone): An agent for radiotherapy // Proceedings of the National Academy of Sciencies. 2001, p.1206-1211. 5. B.Z. Iofa, G.M. Dakar, N.M. Kolesnikova. Methods of reception and measurement of radioactive preparations, collected articles. М.: “Atomizdat”. 1960, p. 278-333. 6. A.A. Shishkin, A.G. Ivanov, A.V. Zajtsev, et al. Copperinclusive monokarboranilporfin the prototype new DNA-connecting cytotoxic compound // DAN. 2005, №6, p. 833-836 (in Russian). 7. P. Polak, J. Geraldts, R. Vlist, L. Lindner. Photo- nuclear production of 67Cu from targets // Radi- ochimica Acta. 1986, p. 169-173. 8. R. Schwarzbach, K. Zimmermann, P. Blauenstein, et al. Development of a simple and selective separation of 67Cu from irradiated zinc for use in antibody la- beling: a comparison of methods // Appl. Radiat. Isot. 1995, №5, p. 329-336. 9. H. Itabashi, Y. Shigeta, H. Kawamoto, H. Akaiwa. Simultaneous determination of the complexing ca- pacity and conditional stability constant of soluble copper (II) complexes in natural-water samples by using a chelate extraction technique // Anal. Scien. 2000, p. 1179-1182. 10. I.E. Alekseev, V.V. Darmogray, N.S. Marchenko. Development of diffusion-thermal technologies for 67Сu and 124I for radionuclide therapy and positron emission tomography // Radiochemistry. 2005, № 5, p. 460-466. 11. S.I. Bondarevskiy, V.V. Eremin, F.S. Nasredinov. Separation of radionuclides from irradiated metal matrices with high "dry" methods // Radiochemistry. 2002, № 1, p. 45-48. 12. M. Yagi, K.J. Kondo. Preparation of carrier-free 67Cu by the 68Zn(γ,p) reaction // Int. jour. Appl. Rad. Isot. 1978, p. 757-759. 13. K. Watanabe, T. Tanaka, A. Iburaim, M. Itagaki. Effects of masking agents on the separation of copper (II) from iron (III) by continuous extraction with 8- hydroxyquinoline // Anal. Sci. 2001, p. 671-674. 14. B.I. Petrov. Diantipyrylmethane as extraction reagents // JAKh. (ХХХУIII). 1983, iss.11, p. 2051-2077. 15. A.N. Planovsky, V.M. Ramm, S.Z. Kagan. Process- es and devices of chemical technologies. M.: “Goskhimizdat”. 1962, 322 p. 16. V.N. Podchaynova, L.N. Simonova. Copper. M.: “Nauka”. 1990, 279 p. Article received 29.09.2013 ФОТОЯДЕРНЫЙ МЕТОД ПРОИЗВОДСТВА Cu-67 Н.И. Айзацкий, Н.П. Дикий, A.Н. Довбня, М.А. Должек, Ю.В. Ляшко, Е.П. Медведева, Д.В. Медведев Экстракция диантипирилпропилметаном (ДАППМ) позволяет эффективно выделять 67Cu. Реализовано экспериментальное выделение 67Cu из сернокислого раствора (1 моль/л) цинка (2 моль/л) с добавлением йо- дистого калия (0,1 моль/л) при помощи ДАППМ (0,02 моль/л), растворенного в хлороформе. При экстрак- ции 67Сu из водной фазы ZnSO4 переходит в органическую фазу (раствор ДАППМ в хлороформе) 84,4% 67Сu. В органической фазе остается 4,6% 67Сu. Производные антипирина образуют в кислых галогенидных растворах хорошо экстрагирующиеся ионные ассоциаты металл + галогенидного аниона и протонированной формы реагента. Поэтому для эффективной реэкстракции необходимо снижение кислотности водной фазы, что и реализуется при последовательных перемешиваниях органической фазы (ДАППМ в хлороформе) с ди- стиллированной водой. Некоторое количество ZnSO4 в процессе экстракции попадает в органическую фазу, что обуславливает низкую степень реэкстракции в первых двух пробах. Эти пробы реэкстракции имеют низ- кие значения рН. Реэкстракцию 67Сu из раствора ДАППМ в хлороформе проводили последовательно четыре раза дистиллированной водой. В третью и четвертую пробы реэкстрагировалось 72,7% активности 67Сu. ФОТОЯДЕРНИЙ МЕТОД ВИРОБНИЦТВА Cu-67 М.І. Айзацький, М.П. Дикий, A.М. Довбня, М.О. Должек, Ю.В. Ляшко, О.П. Медведєва, Д.В. Медведєв Екстракція діантіпірілпропілметаном (ДАППМ) дозволяє ефективно виділяти 67Cu. Реалізовано експери- ментальне виділення 67Cu з сірчанокислого розчину (1 моль/л) цинку (2 моль/л) з додаванням йодистого ка- лію (0,1 моль/л) за допомогою ДАППМ (0,02 моль/л), розчиненого в хлороформі. При екстракції 67Cu з вод- ної фази ZnSO4 переходить в органічну фазу (розчин ДАППМ в хлороформі) 84,4% 67Cu. У органічній фазі залишається 4,6% 67Cu. Похідні антипірину утворюють у кислих галогенідних розчинах добре екстрагуючі іонні асоціати метал + галогенідні аніони і протоновану форми реагенту. Тому для ефективної реекстракції необхідне зниження кислотності водної фази, що і реалізується при послідовних перемішуваннях органічної фази (ДАППМ в хлороформі) з дистильованою водою. Деяка кількість ZnSO4 в процесі екстракції потрапляє в органічну фазу, що обумовлює низьку ступінь реекстракції в перших двох пробах. Ці проби реекстракції мають низькі значення рН. Реекстракції 67Cu з розчину ДАППМ у хлороформі проводили послідовно чотири рази дистильованою водою. У третю і четверту проби реекстрагувалося 72,7% активності 67Cu. http://www.ncbi.nlm.nih.gov/pubmed?term=Parry%20JJ%5BAuthor%5D&cauthor=true&cauthor_uid=16838112 http://www.ncbi.nlm.nih.gov/pubmed?term=Andrews%20R%5BAuthor%5D&cauthor=true&cauthor_uid=16838112 http://www.ncbi.nlm.nih.gov/pubmed?term=Rogers%20BE%5BAuthor%5D&cauthor=true&cauthor_uid=16838112 http://www.pnas.org/search?author1=Richard+Laforest&sortspec=date&submit=Submit http://www.pnas.org/search?author1=Thomas+L.+Buettner&sortspec=date&submit=Submit INTRODUCTION CONCLUSIONS references ФОТОЯДЕРНЫЙ МЕТОД ПРОИЗВОДСТВА Cu-67