Electron sources for plasma electronics and different technological application
There are the following advantages of applying electron guns with plasma cathodes in devices exciting microwave radiation: stability of their parameters, high density of current, relative insensitivity to ion bombardment and the possibility of operating over a wide range of pressure values of a plas...
Saved in:
| Published in: | Вопросы атомной науки и техники |
|---|---|
| Date: | 2002 |
| Main Authors: | , , , |
| Format: | Article |
| Language: | English |
| Published: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2002
|
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/80310 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Electron sources for plasma electronics and different technological application / V.S. Antipov, I.A. Bez’yazyshny, I.V. Berezhnaya, E.A. Kornilov // Вопросы атомной науки и техники. — 2002. — № 4. — С. 155-157. — Бібліогр.: 4 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Summary: | There are the following advantages of applying electron guns with plasma cathodes in devices exciting microwave radiation: stability of their parameters, high density of current, relative insensitivity to ion bombardment and the possibility of operating over a wide range of pressure values of a plasma-generating gas [1-5]. The given work aims at constructing the guns with the parameters necessary for the excitation of microwaves of high amplitudes in the slow-wave structures: the beam energy is 20-30 kV, the current is up to 5 A, and the pulse duration is 0,11÷1 ms. The principal problem arising during construction of heavy-current electron sources with plasma emitters consists in the following: it is necessary to provide such conditions of the gas volume, under which the discharge firing would be stable and the emissive plasma generation be effective, whereas a gas breakdown in the accelerating gap must be eliminated.
|
|---|---|
| ISSN: | 1562-6016 |