Structure and properties of austenitic ODS steel 08Cr18Ni10Ti
Using mechanical alloying, experimental samples of austenitic stainless steel 08Cr18Ni10Ti dispersion hardening nano systems Y₂O₃-ZrO₂ different composition. The microstructure of samples at various stages of preparation, depending on the composition of an oxide of the alloying conditions and th...
Gespeichert in:
| Datum: | 2014 |
|---|---|
| Hauptverfasser: | , , , , , , , , , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2014
|
| Schriftenreihe: | Вопросы атомной науки и техники |
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/80360 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Structure and properties of austenitic ODS steel 08Cr18Ni10Ti / А.N. Velikodnyi, V.N. Voyevodin, M.A. Tiкhonovsky, V.V. Bryk, A.S. Kalchenko, S.V. Starostenko, I.V. Kolodiy, V.S. Okovit, А.М. Bovda, L.V. Onischenko, G.Ye. Storogilov // Вопросы атомной науки и техники. — 2014. — № 4. — С. 94-102. — Бібліогр.: 11 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-80360 |
|---|---|
| record_format |
dspace |
| spelling |
nasplib_isofts_kiev_ua-123456789-803602025-02-09T14:39:39Z Structure and properties of austenitic ODS steel 08Cr18Ni10Ti Структура и свойства аустенитной ДУО стали 08Х18Н10Т Структура і властивості аустенітної ДЗО сталі 08Х18Н10Т Velikodnyi, A.N. Voyevodin, V.N. Tiкhonovsky, M.A. Bryk, V.V. Kalchenko, A.S. Starostenko, S.V. Kolodiy, I.V. Okovit, V.S. Bovda, A.М. Onischenko, L.V. Storogilov, G.Ye. Материалы реакторов на тепловых нейтронах Using mechanical alloying, experimental samples of austenitic stainless steel 08Cr18Ni10Ti dispersion hardening nano systems Y₂O₃-ZrO₂ different composition. The microstructure of samples at various stages of preparation, depending on the composition of an oxide of the alloying conditions and thermal-mechanical processing. Defined structural parameters tape sample (particle size, density and size distribution of the precipitates, etc.). The mechanical properties of tapes at room temperature and at 700 ºC and it is shown that the characteristics ODS steel is significantly higher compared with a conventional steel, obtained according to the same modes. This difference is particularly significant in the test conditions at 700 ºC, where the yield strength of ODS steel is 2.3 times higher than for initial steel 08Cr18Ni10Ti. ODS steel ductility is somewhat lower than the initial one, but its value remains at a level sufficient for the technological and operational goals. С использованием механического легирования получены экспериментальные образцы аустенитной нержавеющей стали 08Х18Н10Т, дисперсно-упрочненной нанооксидами системы Y₂O₃-ZrO₂ различного состава. Изучена микроструктура образцов на разных стадиях получения в зависимости от состава легирующего оксида и условий механико-термической обработки, определены их структурные параметры (размер зерен, плотность и распределение выделений по размерам и др.). Измерены механические свойства лент и показано, что характеристики ДУО стали существенно выше по сравнению с обычной сталью, полученной по тем же режимам. Особенно существенное различие в условиях испытаний при 700 ºС, где увеличение условного предела текучести составляет 2,3 раза. Пластичность ДУО стали несколько ниже, чем у исходной, однако ее величина остается на уровне, достаточном для технологических и эксплуатационных целей. З використанням механічного легування отримані експериментальні зразки аустенітної нержавіючої сталі 08Х18Н10Т, дисперсно-зміцненої нанооксидами системи Y₂O₃-ZrO₂ різного складу. Вивчено мікроструктуру зразків на різних стадіях отримання залежно від складу легуючого оксиду та умов механіко-термічної обробки. Визначено структурні параметри стрічкових зразків (розмір зерен, щільність і розподіл виділень за розмірами та ін.). Виміряно механічні властивості стрічок при кімнатній температурі і при 700 ºС і показано, що характеристики ДЗО сталі істотно вищі в порівнянні із звичайною сталлю, отриманою за тими ж режимами. Особливо істотне це розходження в умовах випробувань при 700 ºС, де зростання умовної межі текучості становить близько 2,3 рази. Пластичність ДЗО сталі трохи нижча, ніж у вихідної, однак її величина залишається на рівні, достатньому для технологічних та експлуатаційних цілей. 2014 Article Structure and properties of austenitic ODS steel 08Cr18Ni10Ti / А.N. Velikodnyi, V.N. Voyevodin, M.A. Tiкhonovsky, V.V. Bryk, A.S. Kalchenko, S.V. Starostenko, I.V. Kolodiy, V.S. Okovit, А.М. Bovda, L.V. Onischenko, G.Ye. Storogilov // Вопросы атомной науки и техники. — 2014. — № 4. — С. 94-102. — Бібліогр.: 11 назв. — англ. 1562-6016 https://nasplib.isofts.kiev.ua/handle/123456789/80360 620.187:621.039.531 en Вопросы атомной науки и техники application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| language |
English |
| topic |
Материалы реакторов на тепловых нейтронах Материалы реакторов на тепловых нейтронах |
| spellingShingle |
Материалы реакторов на тепловых нейтронах Материалы реакторов на тепловых нейтронах Velikodnyi, A.N. Voyevodin, V.N. Tiкhonovsky, M.A. Bryk, V.V. Kalchenko, A.S. Starostenko, S.V. Kolodiy, I.V. Okovit, V.S. Bovda, A.М. Onischenko, L.V. Storogilov, G.Ye. Structure and properties of austenitic ODS steel 08Cr18Ni10Ti Вопросы атомной науки и техники |
| description |
Using mechanical alloying, experimental samples of austenitic stainless steel 08Cr18Ni10Ti dispersion hardening
nano systems Y₂O₃-ZrO₂ different composition. The microstructure of samples at various stages of preparation, depending
on the composition of an oxide of the alloying conditions and thermal-mechanical processing. Defined structural
parameters tape sample (particle size, density and size distribution of the precipitates, etc.). The mechanical properties of
tapes at room temperature and at 700 ºC and it is shown that the characteristics ODS steel is significantly higher compared
with a conventional steel, obtained according to the same modes. This difference is particularly significant in the test
conditions at 700 ºC, where the yield strength of ODS steel is 2.3 times higher than for initial steel 08Cr18Ni10Ti.
ODS steel ductility is somewhat lower than the initial one, but its value remains at a level sufficient for the technological
and operational goals. |
| format |
Article |
| author |
Velikodnyi, A.N. Voyevodin, V.N. Tiкhonovsky, M.A. Bryk, V.V. Kalchenko, A.S. Starostenko, S.V. Kolodiy, I.V. Okovit, V.S. Bovda, A.М. Onischenko, L.V. Storogilov, G.Ye. |
| author_facet |
Velikodnyi, A.N. Voyevodin, V.N. Tiкhonovsky, M.A. Bryk, V.V. Kalchenko, A.S. Starostenko, S.V. Kolodiy, I.V. Okovit, V.S. Bovda, A.М. Onischenko, L.V. Storogilov, G.Ye. |
| author_sort |
Velikodnyi, A.N. |
| title |
Structure and properties of austenitic ODS steel 08Cr18Ni10Ti |
| title_short |
Structure and properties of austenitic ODS steel 08Cr18Ni10Ti |
| title_full |
Structure and properties of austenitic ODS steel 08Cr18Ni10Ti |
| title_fullStr |
Structure and properties of austenitic ODS steel 08Cr18Ni10Ti |
| title_full_unstemmed |
Structure and properties of austenitic ODS steel 08Cr18Ni10Ti |
| title_sort |
structure and properties of austenitic ods steel 08cr18ni10ti |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| publishDate |
2014 |
| topic_facet |
Материалы реакторов на тепловых нейтронах |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/80360 |
| citation_txt |
Structure and properties of austenitic ODS steel 08Cr18Ni10Ti / А.N. Velikodnyi, V.N. Voyevodin, M.A. Tiкhonovsky, V.V. Bryk, A.S. Kalchenko, S.V. Starostenko, I.V. Kolodiy, V.S. Okovit, А.М. Bovda, L.V. Onischenko, G.Ye. Storogilov // Вопросы атомной науки и техники. — 2014. — № 4. — С. 94-102. — Бібліогр.: 11 назв. — англ. |
| series |
Вопросы атомной науки и техники |
| work_keys_str_mv |
AT velikodnyian structureandpropertiesofausteniticodssteel08cr18ni10ti AT voyevodinvn structureandpropertiesofausteniticodssteel08cr18ni10ti AT tikhonovskyma structureandpropertiesofausteniticodssteel08cr18ni10ti AT brykvv structureandpropertiesofausteniticodssteel08cr18ni10ti AT kalchenkoas structureandpropertiesofausteniticodssteel08cr18ni10ti AT starostenkosv structureandpropertiesofausteniticodssteel08cr18ni10ti AT kolodiyiv structureandpropertiesofausteniticodssteel08cr18ni10ti AT okovitvs structureandpropertiesofausteniticodssteel08cr18ni10ti AT bovdaam structureandpropertiesofausteniticodssteel08cr18ni10ti AT onischenkolv structureandpropertiesofausteniticodssteel08cr18ni10ti AT storogilovgye structureandpropertiesofausteniticodssteel08cr18ni10ti AT velikodnyian strukturaisvojstvaaustenitnojduostali08h18n10t AT voyevodinvn strukturaisvojstvaaustenitnojduostali08h18n10t AT tikhonovskyma strukturaisvojstvaaustenitnojduostali08h18n10t AT brykvv strukturaisvojstvaaustenitnojduostali08h18n10t AT kalchenkoas strukturaisvojstvaaustenitnojduostali08h18n10t AT starostenkosv strukturaisvojstvaaustenitnojduostali08h18n10t AT kolodiyiv strukturaisvojstvaaustenitnojduostali08h18n10t AT okovitvs strukturaisvojstvaaustenitnojduostali08h18n10t AT bovdaam strukturaisvojstvaaustenitnojduostali08h18n10t AT onischenkolv strukturaisvojstvaaustenitnojduostali08h18n10t AT storogilovgye strukturaisvojstvaaustenitnojduostali08h18n10t AT velikodnyian strukturaívlastivostíaustenítnoídzostalí08h18n10t AT voyevodinvn strukturaívlastivostíaustenítnoídzostalí08h18n10t AT tikhonovskyma strukturaívlastivostíaustenítnoídzostalí08h18n10t AT brykvv strukturaívlastivostíaustenítnoídzostalí08h18n10t AT kalchenkoas strukturaívlastivostíaustenítnoídzostalí08h18n10t AT starostenkosv strukturaívlastivostíaustenítnoídzostalí08h18n10t AT kolodiyiv strukturaívlastivostíaustenítnoídzostalí08h18n10t AT okovitvs strukturaívlastivostíaustenítnoídzostalí08h18n10t AT bovdaam strukturaívlastivostíaustenítnoídzostalí08h18n10t AT onischenkolv strukturaívlastivostíaustenítnoídzostalí08h18n10t AT storogilovgye strukturaívlastivostíaustenítnoídzostalí08h18n10t |
| first_indexed |
2025-11-26T23:30:29Z |
| last_indexed |
2025-11-26T23:30:29Z |
| _version_ |
1849897601951858688 |
| fulltext |
ISSN 1562-6016. PASТ. 2014. №4(92), p. 94
UDC 620.187:621.039.531
STRUCTURE AND PROPERTIES OF AUSTENITIC ODS
STEEL 08Cr18Ni10Ti
А.N. Velikodnyi
1
, V.N. Voyevodin
1,2
, M.A. Tiкhonovsky
1
, V.V. Bryk
1
, A.S. Kalchenko
1
,
S.V. Starostenko
1,2
, I.V. Kolodiy
1
, V.S. Okovit
1
, А.М. Bovda
1
,
L.V. Onischenko
1
, G.Ye. Storogilov
1
1
National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine;
2
V.N. Karazin Kharkov National University, Kharkov, Ukraine
E-mail: velikodnyi@kipt.kharkov.ua
Using mechanical alloying, experimental samples of austenitic stainless steel 08Cr18Ni10Ti dispersion hardening
nano systems Y2O3-ZrO2 different composition. The microstructure of samples at various stages of preparation, depending
on the composition of an oxide of the alloying conditions and thermal-mechanical processing. Defined structural
parameters tape sample (particle size, density and size distribution of the precipitates, etc.). The mechanical properties of
tapes at room temperature and at 700 ºC and it is shown that the characteristics ODS steel is significantly higher compared
with a conventional steel, obtained according to the same modes. This difference is particularly significant in the test
conditions at 700 ºC, where the yield strength of ODS steel is 2.3 times higher than for initial steel 08Cr18Ni10Ti.
ODS steel ductility is somewhat lower than the initial one, but its value remains at a level sufficient for the technological
and operational goals.
INTRODUCTION
Austenitic steels are used in nuclear power as
material for pressure vessel internals and fuel claddings
in fast reactors. In comparison with ferritic-martensitic
steels they are characterized by higher high-temperature
strength, but have lower radiation resistance [1]. The
problem solution of the improvement of austenitic steels
radiation resistance with simultaneous increasing of
high-temperature resistance is possible by the
nanostructural state production in these alloys, that
characterized by the presence of nanosized particles
(~ 2…10 nm) with high density (~ 10
15
…10
16
cm
-3
) and
uniform distribution into the matrix. Increase of
radiation resistance is caused by the large extent of
boundaries “matrix-nanoparticles”, which are the
effective sinks for radiation defects [2-4].
Thermodynamically stable oxides may serve as such
nanoparticles and steels, strengthened by such particles
are named oxide dispersion-strengthened steels (ODS
steels).
Traditional method of ODS steel production
includes the mechanical alloying (MA) of steel powders
by nanosized oxides (mechanical alloying) with their
subsequent compacting and mechanical-thermal
treatment [5-7]. During the mechanical alloying process
oxide dissolves (partially or completely) in the steel
matrix and during subsequent mechanical-thermal
treatment of compacted materials precipitation of
secondary nanosized particles of oxide occurs.
Composition of precipitated particles mostly doesn’t
coincide with the initial oxide composition. Yttrium
oxide nanopowder [5, 7] is used as oxide more often but
there are also some examples of other oxides, aluminum
oxides for example [8]. Oxide composition either as
presence of alloying elements with high affinity for
oxygen (titanium, for example) in steel has significant
influence on properties and structure formation of ODS
steels.
The goal of this paper was to study the influence of
yttria-doped zirconia nanopowders composition and
conditions of steel manufacturing on structure and
mechanical properties of stainless steel 18Cr10NiTi.
MATERIALS AND METHODS
Commercial austenitic steel 08Cr18Ni10Ti was used
as initial steel. Material for mechanical alloying was
prepared by two methods.
The first method includes melting of initial steel
specimens in vacuum and pouring out of the molten
alloy on rotating water-cooled copper wheel (melt-
spinning) [9].
Using such treatment the 20 μm thick melt-spun
ribbons were obtained in highly non-equilibrium state. It
was assumed, that the small thickness of the ribbons and
its non-equilibrium state allow accelerate the process of
steel mechanical alloying by oxides.
In the second method the steel powders were
obtained by mechanical grinding by abrasives.
Screening of the powder was performed; the powder of
less than 300 μm size and close to the equiaxial shape
was used for mechanical alloying.
Ribbon fragments with dimensions 3x3 mm or the
initial steel powder were mixed with 0.5%wt of oxide
nanopowder produced by Don PhTI NANU (Donetsk)
and mechanically alloyed in argon in high-energy ball
mill (rotation rate was 480 rpm) during 1…10 hours.
The balls made of steel SHKH13 and with of different
diameters were used. Obtained powder consisted of
agglomerated particles with multi modal distribution
and substantial size distribution within the range of
some μm to 500 μm and more. Further fraction with the
size less than 300 μm was used in our work.
All kinds of mechanical treatment from powder
compacting to rolling of compacted blank were carried
out at room temperature. In addition, mechanical
treatments were alternated with short-time annealing in
vacuum at temperature 1200
o
C. In the result the bands
of ODS steel 08Cr18Ni10Ti with thickness 200 μm
were obtained.
mailto:velikodnyi@kipt.kharkov.ua
The specimen structure analysis was conducted by
the methods of electron microscopy using JEM-100CX
and JEM-2100 microscopes.
X-ray diffraction study was performed by DRON-2
diffractometer using Fe-Kα radiation. All specimens
were measured under the same conditions. Since the
diffraction lines from powder specimens had week
intensity the diffraction patterns were collected not in
wide angular range but by selected interval. After this
the preliminary treatment of diffraction patterns was
carried out (background subtraction, smoothing, Kα2
reduction) and approximation of diffraction lines with
pseudo-Voigt function. Quantitative phase analysis was
performed by relation intensity ratio method (RIR).
Microstructural study (size-strain analysis) was
conducted by single line method [10].
RESULTS AND DISCUSSION
INITIAL MATERIALS PARAMETERS
Initial steel microanalysis showed (Fig. 1), that its
composition by main elements complies with State
standard GOST 5632-72. Characteristics of used oxide
nanopowders are presented in Tabl. 1.
Element Content,
wt.%
Content,
at.%
Si K 0.41 0.81
Ti K 0.63 0.72
Cr K 18.90 20.01
Mn K 1.63 1.62
Fe K 67.51 66.60
Ni K 10.76 10.10
Cu K 0.16 0.14
Total 100.00 100.00
Fig. 1. Composition of steel according to microanalysis data
Table 1
Parameters of nanopowders of system Y2O3-ZrO2
Y2O3 Content, mol.%
Particle size*
(crystallite size), nm
Lattice parameter, a**, Ǻ
80 16.5 10.528±8·10
-3
20 29.0 5.208±3·10
-3
8 14.3 5.132±2·10
-3
* Firm-supplier data, ** current work data.
As it can be seen from Тabl. 1 all powders have
cubic lattice, powder size for different yttria content
varies from 14 to 29 nm.
CHARACTERISTICS OF STEEL POWDERS,
MECHANICALLY ALLOYED BY NANOOXIDES
As it was seen from investigation, increasing the
time of grinding in inert medium leads to the better
solution of oxide powders in steel matrix. On the other
hand, it is observed the increasing of powder fraction,
which alloys mechanically with formation of round-
shape particles more than 500 µm size or adheres to the
milling balls and inner surface of steel barrel. The yield
of powder’s working fraction (less than 300 µm size)
depends considerably on oxide powder composition;
moreover, it is observed the obvious tendency of
decreasing of the yield with the increasing of zirconia
content in oxide.
Powder, obtained by mechanical alloying,
corresponds to initial steel with provision for its
alloying by oxides (Fig. 2).
Element Content,
wt.%
Content,
at.%
Si K 0.45 0.89
Ti K 0.57 0.65
Cr K 18.79 19.92
Mn K 1.62 1.63
Fe K 67.97 67.10
Ni K 10.15 9.53
Y L 0.35 0.22
Zr L 0.10 0.06
Total 100.00 100.00
Fig. 2. Composition of steel particle after mechanical sintering with 0.5% of oxide of composition
Y2O3-20 mol.% ZrO2 during 4 hours (according to data of microanalysis)
Microstructure investigation showed that particles
were represented as quite dense formations without
visible boundaries and with a certain quantity of
micropores with size from several fractions of micron to
few microns.
As the result of characteristic radiation data
collection it has been found, that all basic elements (Fe,
Cr, Ni, Zr, Y, Mn and Si) had been distributed
uniformly by cross section of particles.
Spherical particles (“balls”) diameter size of
2…3 mm, obtained by mechanical alloying of fast
quenched steel strips and oxide powder (with
composition 80 mol.% Y2O3-20 mol.% ZrO2) during
10 hours, were selected for electron-microscopic study.
These particles were annealed at 1200
o
C during 1 hour,
squashed and annealed again. EM images of the
structure and treatment results are shown in Fig. 3.
a
b
Fig. 3. Structure of steel spherical particle (“ball”), obtained by mechanical synthesis, pressed and annealed at
1200 ºC: a – grains structure and grain size distribution; b – precipitates appearance and size distribution
As can be seen, there are a lot of fine precipitates
inside of grains. Electron microprobe analysis had
showed (Fig. 4) that precipitates contain titanium,
yttrium, zirconium, oxygen and some other elements.
Supposedly they have composition Y2(Ti, Zr)O5 but this
result must be clarified. Besides the fine precipitates
there is also a low quantity of larger particles size of up
to 100 nm. According to microanalysis data these
particles are titanium oxycarbonitrides and titanium
oxides.
Fig. 4. Microanalysis of fine precipitates composition
in a steel “ball” alloyed by yttrium-zirconium oxide
The results of ODS steel 08Cr18Ni10Ti powders
X-ray diffraction data analysis on different production
stages are represented below. The example of powder
diffraction patterns in the initial state (after mechanical
alloying) and after annealing are shown in Fig. 5.
As can be seen from Tabl. 2, mechanically alloyed
steel contains austenitic and ferritic phase
approximately in equal parts for all compositions of the
oxide nanopowder. Lattice parameters of austenitic
phase and mechanically induced ferritic are practically
independent on oxide powder composition, but austenite
lattice parameter higher than in basic steel (i. e. non-
alloyed by oxides). This can be indicating that yttrium
and/or zirconium atoms, which the atomic radii are
significantly higher than the iron one, are embedded in
the austenite lattice. Furthermore, increase of austenite
lattice parameter can be related with implantation of
oxygen atoms into the lattice. In other words, data on
lattice parameter of oxide alloyed steel confirm the
assumption about “break up” or dissociation of
nanooxides during the high-energy grinding process and
atoms implantation into the steel lattice. The decrease of
0.001.002.003.004.005.006.007.008.009.0010.0011.0012.0013.0014.0015.0016.0017.0018.0019.0020.00
keV
003
0
300
600
900
1200
1500
1800
2100
2400
2700
C
o
u
n
ts
O
K
a
A
lK
a
S
iK
a
T
iL
l
T
iL
a
T
iK
a
T
iK
b
Y
L
l
Y
L
a
Y
K
a
Y
K
b
Z
rL
l
Z
rL
a
Z
rK
a
Z
rK
b
austenite lattice parameter after annealing (see Tabl. 1)
confirms this assumption. This can be due to formation
of oxide precipitates, which connect the “large”
substitution yttrium and zirconium atoms with
interstitial oxygen atoms.
a b
Fig. 5. Diffraction patterns of steel powder mechanically alloyed by nanooxides of composition
80 mol.% Y2O3-20 mol.% ZrO2:
a initial state; b after annealing at temperature 800
o
C during 1 hour
Table 2
Phase composition and structure parameters of 08Cr18Ni10Ti steel powders, mechanically alloyed by nanooxides of
different composition in two conditions: after grinding during 4 hours and subsequent annealing at 800
o
C
(initial equiaxial powders of steel are obtained by mechanic abrasion)
As to substructure parameters we must note the
considerable decreasing of crystallite size and
inessential decreasing of the microstrains level with the
increase of yttrium content in the base oxide. The cause
of these variations is not clear and further investigations
are needed.
Besides the variation of lattice parameters the
annealing of mechanically alloyed powders causes the
2…6 times increasing of crystallite size and decrease of
the microstrains level in the same range. Unfortunately
the correlation between these variations and oxide
powder composition wasn’t determined.
It was found (Tabl. 3) that the time of grinding
doesn’t influence significantly on phase composition of
steel powder, but after grinding during 1 hour the
content of mechanically induced ferrite occurs to be
higher than for larger grinding time. Austenite and
ferrite lattice parameters, also as the crystallite size,
practically independent on the grinding time. At the
same time the microstrains level in austenite and ferrite
increases with the grinding time increasing.
Table 3
Influence of grinding time on phase composition and structural parameters of 08Cr18Ni10Ti steel powders,
mechanically alloyed by nanooxides of composition 80 mol.% Y2O3-20 mol.% ZrO2.
(Fragments of initial steel ribbons after annealing were used)
Grinding time Phase
Weight
fraction, %
Lattice
parameter, Ǻ
Crystallite size,
nm
Microstrains
level
1 hour
austenite 66.9 3.600 13.4 2.29·10
-3
ferrite 33.1 2.873 15.4 3.22·10
-3
2 hours
austenite 74.1 3.598 12.5 3.85·10
-3
ferrite 25.9 2.875 14.6 4.17·10
-3
10 hours
austenite 75.3 3.595 11.9 4.04·10
-3
ferrite 24.7 2.876 18.2 5.60·10
-3
Alloying oxide
composition
Phase
Composition,
wt.%
Lattice
parameter, Å
Crystallite
size, nm
Microstrains
A
ft
er
g
ri
n
d
in
g
8% Y2O3+92% ZrO2
austenite 58.5 3.5968 39.6 8.54·10
-3
ferrite 41.5 2.875
20% Y2O3+80% ZrO2
austenite 42.7 3.5978 16.1 6.23·10
-3
ferrite 57.3 2.876
80% Y2O3+20% ZrO2
austenite 48.1 3.5988 14.8 6.29·10
-3
ferrite 51.9 2.876
A
n
n
ea
li
n
g
8
0
0
°
С
,
1
h
8% Y2O3+92% ZrO2 austenite 100 3.5893 60.9 1.34·10
-3
20% Y2O3+80% ZrO2 austenite 100 3.5886 100.3 1.83·10
-3
80% Y2O3+20% ZrO2 austenite 100 3.5885 69.2 2.81·10
-3
STRUCTURAL CHARACTERISTICS
OF ODS STEEL RIBBONS
Nano-sized powder 80 mol.%Y2O3-20 mol.%ZrO2
(see Tabl. 1) was used as oxide on mechanical alloying
and fast quenched ribbons were used as steel.
Diffraction patterns, collected from rolled and annealed
steel ribbons, are shown in Fig. 6. Results of diffraction
patterns treatment are presented in Tabl. 4.
As it can be seen form table, after rolling two phases
– austenite and ferrite are present either in initial steel as
in ODS steel. Austenitic phase is textured (see Fig. 6,a),
crystallographic planes (110) oriented parallel to rolling
plane. Time of powder grinding influences
insignificantly on lattice parameters and microstrains
level in austenite and ferrite, but it is observed that the
austenite crystallite size decreases with increasing of
grinding time. It must be noted that the crystallite size
and microstrains level in the initial steel are
approximately the same as in ODS steel ribbons.
After annealing at T = 800
o
C either phase
composition as crystallite size and microstrains level
changed considerably. Thus, in some specimen ferrite
completely disappeared, in others its fraction appeared
insignificantly.
Intensity relation of diffraction lines corresponds
(see Fig. 6,b) to non-textured condition. Austenite
lattice parameter is equal to the value before annealing
within the error limits. Crystallite size of austenite
increased in 3 times, and the microstrains level
decreased in 1.5…3 times. At the same time in
specimens with some ferrite quantity microstrains level
is obviously higher (2.8·10
-3
) than in non-ferrite one
((5.2…7.5)·10
-4
).
a
b
Fig. 6. Diffraction patterns of ODS steel ribbons after
rolling (a) and annealing (b)
Table 4
Phase composition and structural parameters of initial steel ribbons and ODS steel ribbons
(80 mol.% Y2O3-20 mol.% ZrO2 nanooxides alloyed)
Condition Phase
Weight
fraction, %
Lattice
parameter, Ǻ
Crystallite
size, nm
Microstrains
level
Initial steel, rolling
austenite 75 3.587 41.1 2.86·10
-3
ferrite 25 2.873 58.6 2.75·10
-3
Initial steel, rolling and annealing
(800
o
C, 1 h)
austenite 96.3 3.5880 124.4 1.09·10
-3
ferrite 3.7 2.872 101.4 1.60·10
-3
ODS steel, grinding 1 h, rolling
austenite 3.588 51.7 1.06·10
-3
ferrite 2.874 64.4 2.56·10
-3
ODS steel, grinding 1 h, rolling
and annealing (800
o
C, 1 h)
austenite 100 3.5868 169.4 7.47·10
-4
ODS steel, grinding 2 h, rolling
austenite 3.589 46.2 1.86·10
-3
ferrite 2.877 32.8 0
ODS steel, grinding 2 h, rolling
and annealing (800
o
C, 1 h)
austenite 100 3.5877 149.6 5.17·10
-4
ODS steel, grinding 4 h, rolling
austenite 55.1 3.5909 34.0 5.78·10
-3
ferrite 44.9 2.874
ODS steel, grinding 4 h, rolling
and annealing (800
o
C, 1 h)
austenite 92.9 3.5853 284.0 2.84·10
-3
ferrite 7.1 2.796
.
a
b
c
Fig. 7. Microstructure of steel ribbon specimens, alloyed by nanooxides of different composition and size
distribution of oxide precipitates: a alloying oxide 8Y2O3-92ZrO2; b alloying oxide 20Y2O3-80ZrO2;
c alloying oxide 80Y2O3-20ZrO2 (numbers are molar percent)
EM microstructure studies were performed on
ribbons prepared from mechanically alloyed powder
obtained by grinding during 4 hours. Main purpose of
microstructure studies was on establishment of
quantitative microstructure parameters, which
determinate mechanical characteristics of steel and its
behavior under the irradiation. Those characteristics are:
grain size, precipitations density, its average size and
size distribution.
Microstructure images of 08Cr18Ni10Ti steel,
alloyed by Y2O3-ZrO2 nanooxides, and oxide
precipitates size distribution histograms are shown on
Fig. 7. Grain structure was the same approximately for
all samples, average grain size was 1.2…2.0 μm
(Tabl. 5). Significant concentration of precipitates and
its near-uniform distribution are observed for all
samples. This is a dominant condition on ODS steel
production.
Precipitations size varied from some of nanometers
to hundreds of nanometers, but the last were a few
orders less, thus, its contribution to concentration and
average size was negligible. Note, that calculations were
performed on large data array (more than 1000
precipitates per composition). Table 5 contains
generalized data on precipitates characteristics of
specimens with different composition. As it is seen from
table the best characteristics are observed in ODS steel
specimen, obtained using 80Y2O3-20ZrO2 nanopowder.
In this specimen minimal average grain and precipitates
size, maximal precipitations density and most narrow its
size distribution are observed. Large precipitations (size
of more than 50 nm) are practically absent (see Fig. 7,b).
Determination of formed oxides composition is a goal
of the following investigations.
Table 5
Microstructure characteristics of ribbons, alloyed by oxides of different composition
Alloying oxide
composition, mol.%
Average grain size, μm
Average oxide precipitates
size, μm
Density of precipitates,
cm
-3
8Y2O3-92ZrO2 2 13 1.7·10
15
20Y2O3-80ZrO2 1.5 13 4.5·10
15
80Y2O3-20ZrO2 1.2 10 7.3·10
15
MECHANICAL PROPERTIES MECHANICAL
PROPERTIES
Mechanical testing results of initial and ODS steel
ribbons, annealed on final stage at 1000
o
C, are
presented in Tabl. 6. Fast-quenched steel ribbons and
80Y2O3-20ZrO2 oxide nanopowders were used for
mechanical alloying. 700
o
C testing temperature was
selected as bench mark, for which requirements on
mechanical properties of FE claddings for fast reactors
are known.
Table 6
Mechanical properties of base steel 08Cr18Ni10Ti and steel alloyed by nanooxides with composition
80Y2O3-20ZrO2
Steel
Mechanical properties on different temperatures testing
σ0.2, MPa σВ, MPa δ, % Hμ, MPa
20
о
С 700
о
С 20
о
С 700
о
С 20
о
С 700
о
С 20
о
С
Initial 242 158 725 279 55.0 19.7 2120
ODS 510 370 799 415 40.5 12.0 2700
As it can be seen strength characteristics of ODS
steel at both temperatures are considerably higher than
that of initial steel. Effect of nanoparticles strengthening
is strongly pronounced at temperature 700
o
C. So, if
conditional yield strength σ0.2 at room temperature
increases due to alloying in 2.1 times, then it increases
in 2.3 times at temperature 700
o
C. Tensile strength σB
at these temperatures increases in 1.1 and 1.5 times,
respectively.
There are few publications on austenitic ODS steels.
There are more less publications, where mechanical
properties of these steels were investigated at near-
operating temperatures. Thus, authors [11] cited data on
mechanical properties of AISI 316L ODS steel at 20
o
C
and 700
o
C temperatures. These properties are lower
than we have obtained. Evidently, the reason is smaller
oxide precipitates size and more uniform size
distribution in our samples.
CONCLUSION
Features of austenitic 08Cr18Ni10Ti ODS steel
mechanical alloying by Y2O3-ZrO2 nanooxides were
studied. It is shown that powders contain austenitic and
ferritic phases after mechanical alloying. Moreover, the
quantity of mechanically induced ferrite mainly depends
on quality of the initial steel before alloying. In the case
of equiaxial powders, obtained by mechanical abrasion,
the quantity of ferrite is considerably higher than on
using fast-quenched ribbons. Austenitic and ferritic
phases of steel powders, mechanically alloyed by
nanooxides, have approximately the same crystallite
size. But it is observed the tendency of crystallite size
decreasing and increasing of the microstrains level with
the yttria content increasing in basic oxide nanopowders.
Annealing at temperatures above 800
o
C leads to
austenization, and, at the same time, crystallite size
increases and microstrains level decreases.
Structural investigations of mechanically alloyed
steel powders showed that even in coarse particles after
thermal treatment there was a considerable amount of
small oxide precipitates with complex composition.
These precipitates contain yttrium, titanium, zirconium
and other elements. In the ODS steel ribbons after the
final thermal treatment austenitic matrix phase is
observed. Complex oxide precipitates density varies
within (1.7…7.3)·10
15
cm
-3
range and the average size
is near 10 nm. Moreover, the highest density of
precipitates, the lower mean size and higher
homogeneity of its size distribution were detected in
specimen, alloyed by 80 mol.% Y2O3-20 mol.% ZrO2
nanooxides.
Strength characteristics of ODS steel, obtained by
80 mol.% Y2O3-20 mol.% ZrO2 nanooxides alloying,
are significantly higher than the initial steel ones.
Especially substantial gain is observed at high
temperatures (700
o
C), where the yield strength of ODS
steel is 2.3 times higher than for initial steel
08Cr18Ni10Ti. At the same time, ductility decreases
slightly, but remains on sufficient level for
technological and operational purposes.
REFERENCES
1. R.L. Klueh and A.T. Lelson. Ferritic/Martensitic
Steels for Next-Generation Reactors // J. Nucl. Mater.
2007, v. 371(1-3), p. 37-52.
2. A. Ramar, N. Baluc, R. Schaublin. On the lattice
coherency of oxide particles dispersed in EUROFER97
// J. Nucl. Mater. 2009, v. 386-388, p. 515-519.
3. C. Liu, C. Yu, N. Hashimoto, S. Ohnuki,
M. Ando, K. Shiba, S. Jitsukaw. Micro-structure and
microhardness of ODS steels after ion irradiation // J.
Nucl. Mater. 2011, v. 417, p. 270-273.
4. V.V. Brykh, V.M. Voyevodin, O.S. Kalchenko,
V.V. Melnichenko, I.M. Neklyudov, V.S. Ageev,
A.O. Nikitina. Swelling of dispersion strengthened by
yttrium oxides steel 08Cr18Ni10Ti, irradiated by heavy
ions // PAST. Series “Physics of radiation defects and
radiation materials science”. 2013, N 2(84), p. 23-30.
5. S. Ukai, M. Harada, H.Okada. Alloying design
of oxide dispersion stengthened ferritic steel for long
life FBRs core materials // J. Nucl. Mater. 1993, v. 204,
p. 65-73.
6. V.V. Sagaradze, V.I. Shalaev, V.L. Arbuzov,
B.N. Goshchitskii, Yun Tian, Wan Qun, Sun Jiguang.
Radiation resistance and thermal creep of ODS ferritic
steels // J. Nucl. Mater. 2001, v. 295, p. 265-272.
7. C. Cayron, E. Rath, I. Chu, S. Launois.
Microstructural evolution of Y2O3 and MgAl2O4 ODS
EUROFER steels during their elaboration by
mechanical milling and hot isostatic pressing // J. Nucl.
Mater. 2004, v. 335, p. 83-102.
8. T.S. Srivatsan, N. Narendra, J.D. Troxell. Tensile
deformation and fracture behavior of an oxide
dispersion strengthened copper alloy // Materials &
Design. 2000, N 21 (3), p. 191-198.
9. O.M. Bovda, O.E. Dmitrenko, D.G. Malykhin,
L.V. Onishchenko, V.M. Pelykh. Structure and
properties of fast-quenched Zr-based alloys // PAST.
Series “Vacuum, pure materials, superconductors”.
2007, N 4, p.173-178.
10. Th.H. De Keijser, J.I. Langford, E.J. Mettemeijer,
A.B.P. Vogels. Use of the Voigt function in a single-
line method for the analysis of X-ray diffraction line
broadening // J. Appl. Cryst. 1982, v. 15, p. 308-314.
11. Tae Kyu Kim, Chang Soo Bae, Do Hyang Kim,
Jinsung Jang, Sung Ho Kim. Chan Bock Lee and Dohee
Hahn, Microstructural observation and tensile isotropy
of an austenitic ODS steel // Nuclear Engineering and
Technology. 2008, v. 40, N 4, р. 305-310.
Article received 09.07.2014
СТРУКТУРА И СВОЙСТВА АУСТЕНИТНОЙ ДУО СТАЛИ 08Х18Н10Т
А.Н. Великодный, В.Н. Воеводин, М.А. Тихоновский, В.В. Брык, А.С. Кальченко, С.В. Старостенко,
И.В. Колодий, В.С. Оковит, А.М. Бовда, Л.В. Онищенко, Г.Е. Сторожилов
С использованием механического легирования получены экспериментальные образцы аустенитной
нержавеющей стали 08Х18Н10Т, дисперсно-упрочненной нанооксидами системы Y2O3-ZrO2 различного
состава. Изучена микроструктура образцов на разных стадиях получения в зависимости от состава
легирующего оксида и условий механико-термической обработки, определены их структурные параметры
(размер зерен, плотность и распределение выделений по размерам и др.). Измерены механические свойства
лент и показано, что характеристики ДУО стали существенно выше по сравнению с обычной сталью,
полученной по тем же режимам. Особенно существенное различие в условиях испытаний при 700 ºС, где
увеличение условного предела текучести составляет 2,3 раза. Пластичность ДУО стали несколько ниже, чем
у исходной, однако ее величина остается на уровне, достаточном для технологических и эксплуатационных
целей.
http://scholar.google.com/citations?view_op=view_citation&hl=ru&user=sJdLs0UAAAAJ&citation_for_view=sJdLs0UAAAAJ:Tyk-4Ss8FVUC
http://scholar.google.com/citations?view_op=view_citation&hl=ru&user=sJdLs0UAAAAJ&citation_for_view=sJdLs0UAAAAJ:Tyk-4Ss8FVUC
http://scholar.google.com/citations?view_op=view_citation&hl=ru&user=sJdLs0UAAAAJ&citation_for_view=sJdLs0UAAAAJ:Tyk-4Ss8FVUC
СТРУКТУРА І ВЛАСТИВОСТІ АУСТЕНІТНОЇ ДЗО СТАЛІ 08Х18Н10Т
О.М. Великодний, В.М. Воєводін, М.А. Тихоновський, В.В. Брик, О.С. Кальченко, С.В. Старостенко,
І.В. Колодій, В.С. Оковіт, О.М. Бовда, Л.В. Онищенко, Г.Є. Сторожилов
З використанням механічного легування отримані експериментальні зразки аустенітної нержавіючої
сталі 08Х18Н10Т, дисперсно-зміцненої нанооксидами системи Y2O3-ZrO2 різного складу. Вивчено
мікроструктуру зразків на різних стадіях отримання залежно від складу легуючого оксиду та умов механіко-
термічної обробки. Визначено структурні параметри стрічкових зразків (розмір зерен, щільність і розподіл
виділень за розмірами та ін.). Виміряно механічні властивості стрічок при кімнатній температурі і при
700 ºС і показано, що характеристики ДЗО сталі істотно вищі в порівнянні із звичайною сталлю, отриманою
за тими ж режимами. Особливо істотне це розходження в умовах випробувань при 700 ºС, де зростання
умовної межі текучості становить близько 2,3 рази. Пластичність ДЗО сталі трохи нижча, ніж у вихідної,
однак її величина залишається на рівні, достатньому для технологічних та експлуатаційних цілей.
|