Composite scintillators as new type of a scintillation material

For radioecological tasks, we have developed a new type of scintillation materials - composite scintillators, consisting of dielectric gel as a base into which granules of scintillating substances were introduced. It has been shown that such material can be created both on the basis of organic and i...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2014
Автор: Karavaeva, N.L.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2014
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/80490
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Composite scintillators as new type of a scintillation material / N.L. Karavaeva // Вопросы атомной науки и техники. — 2014. — № 5. — С. 91-97. — Бібліогр.: 20 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-80490
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-804902025-02-09T14:08:06Z Composite scintillators as new type of a scintillation material Композиционные сцинтилляторы как новый вид сцинтилляционного материала Композицiйнi сцинтилятори як новий вид сцинтиляцiйного матерiалу Karavaeva, N.L. Ядерно-физические методы и обработка данных For radioecological tasks, we have developed a new type of scintillation materials - composite scintillators, consisting of dielectric gel as a base into which granules of scintillating substances were introduced. It has been shown that such material can be created both on the basis of organic and inorganic granules. In the first case, efficient fast neutron detectors can be created, with neutron discrimination on the background of gamma-radiation close to organic single crystals. In the second case, efficient detectors of thermal neutrons could be developed, with variation of the granule size allowing substantial reduction of the effects of background radiation. Separate fragments of the scintillator can be linked together, creating endless planes. A possibility of using bases with higher radiation hardness as compared with standard scintillator bases, as well as using any scintillating substance for granules allows thinking about possible application of such technological approach not only for radioecological tasks (ultra-low fluxes), but also in high energy physics. Для радиоэкологических задач нами был разработан новый вид сцинтилляционного материала композиционные сцинтилляторы, состоящие из диэлектрического геля в качестве основы, в которую внедрены гранулы сцинтиллирующего вещества. Показано, что данный материал может создаваться как на основе органических, так и неорганических гранул. Первые позволяют создавать эффективные детекторы быстрых нейтронов со степенью разделения нейтронов на фоне гамма-излучения, близкой к органическим монокристаллам. Вторые явились эффективными детекторами тепловых нейтронов, а варьирование размеров их гранул позволило существенно уменьшить влияние фоновых излучений. Отдельные фрагменты сцинтиллятора можно соединять вместе, создавая бесконечные плоскости. Возможность выбора более радиационно-стойких основ, чем стандартные сцинтилляционные основы, и любых сцинтилляционных веществ для создания гранул позволяет задуматься о возможности использования такого технологического подхода не только для задач радиоэкологии (сверхмалые потоки), но и для задач физики высоких энергий. Для радiоекологiчних задач нами був розроблений новий вид сцинтиляцiйного матерiалу композицiйнi сцинтилятори, що складаються з дiелектричного гелю в якостi основи, в яку введенi гранули сцинтилюючої речовини. Показано, що даний матерiал може створюватися як на основi органiчних, так i неорганiчних гранул. Першi дозволяють створювати ефективнi детектори швидких нейтронiв з ступенем подiлу нейтронiв на фонi гамма- випромiнювання, близькою до органiчних монокристалiв. Другi є ефективними детекторами теплових нейтронiв, а варiювання розмiрiв їх гранул дозволило iстотно зменшити вплив фонових випромiнювань. Окремi частини сцинтилятора можна з'єднувати разом, створюючи нескiнченнi площi. Можливiсть вибору бiльш радiацiйностiйких основ, нiж стандартнi сцинтиляцiйнi основи, та будь-яких сцинтиляцiйних речовин для створення гранул дозволяє замислитися про можливiсть використання такого технологiчного пiдходу не тiльки для задач радiоекологiї (надслабкi потоки), а й для задач фiзики високих енергiй. This work was supported by the State Fund for Fundamental Research of Ukraine (project No. F58/06, ”The effect of large radiation doses on scintillation and optical properties of novel types of organic detectors”). 2014 Article Composite scintillators as new type of a scintillation material / N.L. Karavaeva // Вопросы атомной науки и техники. — 2014. — № 5. — С. 91-97. — Бібліогр.: 20 назв. — англ. 1562-6016 PACS: 29.40.Mc, 81.05.Zx https://nasplib.isofts.kiev.ua/handle/123456789/80490 en Вопросы атомной науки и техники application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Ядерно-физические методы и обработка данных
Ядерно-физические методы и обработка данных
spellingShingle Ядерно-физические методы и обработка данных
Ядерно-физические методы и обработка данных
Karavaeva, N.L.
Composite scintillators as new type of a scintillation material
Вопросы атомной науки и техники
description For radioecological tasks, we have developed a new type of scintillation materials - composite scintillators, consisting of dielectric gel as a base into which granules of scintillating substances were introduced. It has been shown that such material can be created both on the basis of organic and inorganic granules. In the first case, efficient fast neutron detectors can be created, with neutron discrimination on the background of gamma-radiation close to organic single crystals. In the second case, efficient detectors of thermal neutrons could be developed, with variation of the granule size allowing substantial reduction of the effects of background radiation. Separate fragments of the scintillator can be linked together, creating endless planes. A possibility of using bases with higher radiation hardness as compared with standard scintillator bases, as well as using any scintillating substance for granules allows thinking about possible application of such technological approach not only for radioecological tasks (ultra-low fluxes), but also in high energy physics.
format Article
author Karavaeva, N.L.
author_facet Karavaeva, N.L.
author_sort Karavaeva, N.L.
title Composite scintillators as new type of a scintillation material
title_short Composite scintillators as new type of a scintillation material
title_full Composite scintillators as new type of a scintillation material
title_fullStr Composite scintillators as new type of a scintillation material
title_full_unstemmed Composite scintillators as new type of a scintillation material
title_sort composite scintillators as new type of a scintillation material
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2014
topic_facet Ядерно-физические методы и обработка данных
url https://nasplib.isofts.kiev.ua/handle/123456789/80490
citation_txt Composite scintillators as new type of a scintillation material / N.L. Karavaeva // Вопросы атомной науки и техники. — 2014. — № 5. — С. 91-97. — Бібліогр.: 20 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT karavaevanl compositescintillatorsasnewtypeofascintillationmaterial
AT karavaevanl kompozicionnyescintillâtorykaknovyjvidscintillâcionnogomateriala
AT karavaevanl kompozicijniscintilâtoriâknovijvidscintilâcijnogomaterialu
first_indexed 2025-11-26T16:16:24Z
last_indexed 2025-11-26T16:16:24Z
_version_ 1849870294660939776
fulltext COMPOSITE SCINTILLATORS AS NEW TYPE OF A SCINTILLATION MATERIAL N.L.Karavaeva∗ Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 60 Lenin Avenue, 61001, Kharkov, Ukraine (Received May 16, 2014) For radioecological tasks, we have developed a new type of scintillation materials – composite scintillators, consisting of dielectric gel as a base into which granules of scintillating substances were introduced. It has been shown that such material can be created both on the basis of organic and inorganic granules. In the first case, efficient fast neutron detectors can be created, with neutron discrimination on the background of gamma-radiation close to organic single crystals. In the second case, efficient detectors of thermal neutrons could be developed, with variation of the granule size allowing substantial reduction of the effects of background radiation. Separate fragments of the scintillator can be linked together, creating endless planes. A possibility of using bases with higher radiation hardness as compared with standard scintillator bases, as well as using any scintillating substance for granules allows thinking about possible application of such technological approach not only for radioecological tasks (ultra-low fluxes), but also in high energy physics. PACS: 29.40.Mc, 81.05.Zx 1. INTRODUCTION Earlier, we proposed a technology for preparation of new type of organic scintillation materials for efficient detection of fast and thermal neutrons. This allowed creation of detectors without limitations imposed on area and shape of the input window [1, 2]. The ob- tained scintillation materials and detectors on their base are characterized by high universality, simplic- ity of their use and possibility of their application for wide spectrum of problems related to detection and identification of ionizing radiations. However, not all possibilities of this technological approach have been used. Thus, with a new generation of acceler- ators, irradiation of detectors in these installations became much stronger. Unique possibilities of com- posite scintillators make it promising to create scin- tillation systems with high radiation stability. In this paper, we present our analysis of possible applications of composite scintillators. 2. APPLICATION OF COMPOSITE SCINTILLATORS 2.1. Fast neutron detectors In a hydrogen-containing organic material, fast neu- trons generate recoil protons, with their maximum energy equal the energy of neutrons. Thus, organic scintillators and detectors on their base can be used for spectroscopy of fast neutrons [3]. We have developed composite scintillators that, like organic single crystals, were able to discern parti- cles by the shape of scintillation pulse. The schemes used for separation between the radiation to be de- tected and the background were presented in our previous works [4, 5, 6, 7]. These schemes allow de- termining the spectra of recoil protons. Appropriate processing by numerical differentiation allows obtain- ing, after reconstruction, of the Pu-Be source neutron spectrum. As an example, Fig.1 shows the obtained neutron spectrum of Pu-Be source for a composite scintillator based on stilbene granules with linear di- mensions of granules L from 1.7 to 2.0 mm. The scin- tillator dimensions: diameter 30 mm, height 20 mm. 100 200 300 400 500 600 700 800 900 0 500 1000 1500 2000 2500 N um be r o f d et ec te d ne ut ro ns Channel Number 3 98 7 6 5 4 32 1 Fig.1. Reconstructed neutron spectrum of 239Pu-Be source for composite scintillator on the basis of stil- bene granules with linear dimensions of granules L from 1.7 to 2.0 mm In Fig.1, peaks 1 – 9 correspond to energies 3.1; 4.2; 4.9; 6.4; 6.7; 7.3; 7.9; 8.6 and 9.7 MeV of neutrons emitted by 239Pu-Be source [8]. ∗Corresponding author E-mail address: karavaeva77@rambler.ru ISSN 1562-6016. PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2014, N5 (93). Series: Nuclear Physics Investigations (63), p.91-97. 91 When the granule size is optimal, we can obtain spectra identical to those with a single crystal; with grain size smaller than or comparable to the path of recoil protons, the spectrum will be smeared. One should note that detection selectivity with our samples was confirmed by studies of our col- leagues in Poland [9], as well as in China and South Korea [10]. 2.2. Thermal neutron detectors The next step in the use of broad possibilities offered by our technological approach is creation of compos- ite scintillators for detection of thermal neutrons on the basis of Ce:GSO and Ce:GPS. These substances were chosen because of their uniquely high cross-section of thermal neutron radi- ation capture by gadolinium nuclides 155Gd, 157Gd, alongside with high content of these nuclides in the natural raw material. This allows using a natural mixture of gadolinium nuclides without its additional enrichment. As a result of thermal neutron capture, gadolinium emits conversion electrons, as well as pho- tons of characteristic X-ray and gamma radiation. When the edge effect is small, gadolinium-based scin- tillators should exhibit a characteristic peak of 33 keV energy, alongside with another peak at 77 keV, which is the sum of the 33 keV peak of conversion electrons and 44 keV – of X-ray radiation [11]. To obtain thermal neutrons, we used a calibrated paraffin sphere with a 239Pu-Be source inside. The yield of thermal neutrons was 9% of the total fast neu- tron flux (105 neutrons/s). The thermal neutron peak was identified by the ”cadmium difference” method. To reduce the number of gamma-radiation photon de- tection events, a lead shield of 2.5 cm thickness was used. The efficiency of thermal neutron detection was estimated as follows: εth = NΣ t · Ffast · ηth · S 4πR2 × 100%, (1) where NΣ is the number of events of thermal neutron detection, t is the time of accumulation of the events (spectrum); Ffast is the number of fast neutron emit- ted by the source per second, ηth=0,09 is the number of neutrons moderated in the paraffin sphere to ther- mal energy per one fast neutron, S is the thermal neutron detector area, R is the distance between the source and the detector. The value εγ (Fig.6) was calculated as εγ = 1− exp(−µρρξd), (2) where µρ is the mass attenuation coefficient of X-ray radiation [12], ρ is the density, ξ is the volume frac- tion of crystalline granules for Ce:GSO and Ce:GPS (see Chapter 3.3)), d is the scintillator thickness. It was assumed that d was equal to the average grain size in the given fraction. The coefficient ξ accounted for the fact that in the composite scintillator (as distinct from single crystals) the space between the scintillating substance (granules) was filled by non- scintillating gel. The calculations were carried out for gamma-radiation energies of 30 keV, 60 keV, 80 keV, 150 keV, 600 keV, and 8 MeV. Fig.2 shows, as an example, the calculation re- sults for thermal neutron detection efficiency εth for a set of composite scintillators Ce:GSO. Calculations were carried out separately for each of three energy ranges. Unfilled signs in Fig.3 show εth values for Ce:GSO single crystals of 0.39 mm thickness. Data for the conversion electron detection range are noted by squares, for the 77 keV peak – triangles, and for their total signal – circles. The calculated curves of gamma-radiation detection efficiency εγ are pre- sented as solid lines. We have compared the values of thermal neutron detection efficiency calculated by formula (1) using the obtained experimental data (internal counting) and detection efficiency of external gamma-radiation photons εγ , which were calculated by formula (2). 0,01 0,1 1 0,0 0,2 0,4 0,6 0,8 1,0 0,01 0,1 1 0,0 0,2 0,4 0,6 0,8 1,0 Detector Thickness (mm) 6 5 4 3 2 Ef fic ie nc y of n eu tro n de te ct io n e th 1 ® Eg = 30 keV 2 ® Eg = 60 keV 3 ® Eg = 80 keV 4 ® Eg = 150 keV 5 ® Eg = 600 keV 6 ® Eg = 8000 keV Ef fic ie nc y of g am m f d et ec tio n e g 1 20-120 keV56-120 keV,20-55 keV, Fig.2. Thermal neutron detection efficiency εth for a set of composite scintillators Ce:GSO (signs) and calculated detection efficiency εγ of gamma-radiation of energy Eγ (lines) as function of detector thickness d As it can be seen from Fig.2, the detection efficiency of 33 keV conversion electrons (squares) is weakly de- pendent upon the scintillator thickness. This results becomes clear if we take into account that the free path of 33 keV electrons in a given scintillation mate- rial is approximately equal to 0.002 mm [13]. There- fore, a single-layer composite gadolinium-containing scintillator with average Ce:GSO or Ce:GPS granule size above 0.002 mm is already an efficient selective detector of conversion electrons of 33 keV energy. The detection efficiency of external gamma-radiation photons in this case becomes lower as compared with detection efficiency of secondary radiations emerging inside the granules, and substantial passive protec- tion from external gamma-radiation photons becomes redundant. 2.3. Combined neutron detectors Using the broad possibilities of the proposed techno- logical approach, we have developed new combined 92 composite detectors for separate detection of fast and thermal neutrons on the background of gamma- radiation. These detectors are composed of an or- ganic composite scintillator that detects fast neu- trons and a single-layer inorganic composite scintilla- tor that detects thermal neutrons [5]. 2.4. Detectors of alpha particles The proposed technological approach to prepara- tion of composite scintillation materials can also be used for those materials which cannot be grown from the melt as bulky crystals. Fig.3 shows amplitude scintillation spectra of a single-layer composite scin- tillator on the basis of 1,4-diphenyl-1,3-butadiene excited by alpha-particles of different energies. 100 200 300 400 500 0 200 400 600 800 1000 1200 1400 2000 4000 6000 8000 10000 Number of Photons 4 5 6 7 32 Alpha Energies E a (MeV) 1 0.65 2 1.44 3 2.16 4 2.71 5 3.29 6 3.87 7 4.43 1,4-diphenyl-2,3-butadiene Single-layer composite detector (thin crystalline plates) N um be r o f p ul se s Channel Number 1 Fig.3. Amplitude scintillation spectra of single-layer composite scintillator on the basis of 1,4-diphenyl-1,3- butadiene in detection of alpha-particles of energies 0.65 MeV, 1.44 MeV, 2.16 MeV, 2.71 MeV, 3.29 MeV, 3.87 MeV and 4.43 MeV (239Pu) Alpha-particles of different energies were ob- tained by their moderation in air. The energy of alpha-particles passed through the air layer of thickness h was determined in the following way. Knowing the alpha-particle path in air r, we find the residual path ∆ = (r–h), and then, using literature data [14], we determine the energy corresponding to the residual path ∆. 0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 4,5 5,0 0 1x103 2x103 3x103 4x103 5x103 6x103 o-POPOP Single-layer o-POPOP composite detector, L = 1,3-1,5 mm N um be r o f p ho to ns P Alpha Energy E a , MeV Fig.4. small Scintillation signal as function of ex- citation energy (alpha-excitation, scintillators based on o-POPOP) Amplitude scintillation spectra of scintillators based on o-POPOP, stilbene and 1,4-diphenyl-1,3- butadiene obtained under irradiation by alpha- particles of different energies were rather similar and showed no peculiar features. Figs.4 and 5 show scintillation signals from composite scintillators based on o-POPOP and 1,4-diphenyl-1,3-butadien as function of excita- tion energy for the case of alpha particles. 0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 4,5 5,0 0 1x103 2x103 3x103 4x103 5x103 6x103 1,4-diphenyl-2,3-butadiene Single-layer composite detector (thin DFB crystalline plates) N um be r o f p ho to ns P Alpha Energy E a , MeV Fig.5. Scintillation signal as function of excita- tion energy (alpha-excitation, scintillators based on 1,4- diphenyl-1,3-buradiene) 3. SAMPLE PREPARATION TECHNOLOGY FEATURES 3.1. Light transmission in the systems studied Composite scintillators are distinguished, as com- pared to conventional systems, by their universality and much broader application possibilities. Proper- ties of known scintillators are generally characterized by two main groups of parameters: 1–volume (ac- counting for shape); 2–chemical composition. In the case of composite scintillators, the third group of pa- rameters becomes important, related to the size of scintillation granules. Therefore for short-range radi- ations, accounting for transparence features of these systems, thin-layered samples shouls be developed. For penetrating radiations, such as fast neutrons, op- timal number of layers should be determined. This number should be sufficiently high to ensure efficient interaction and sufficiently low to ensure light out- put from the scintillator. Thus, for detection of fast neutrons the optimum thickness was determined as 20 mm (see Chapter 2.1), while for thermal neu- trons – single-layered systems with granule size of 30-100 microns. In this respect, it is important to study the transparence characteristics of composite scintillators as function of thickness. Since light propagation in such systems is of diffuse character, it is reasonable to study trans- parence as function of average granule size at dif- ferent wavelengths. This is very important for de- velopment of layered systems, where radiation detec- tion efficiency is directly dependent on light transmis- 93 sion through the scintillator. Measurements of opti- cal transmission for single-layered and multi-layered stilbene-based samples were carried out using a Shi- madzu 2450 spectrophotometer with an integrating sphere. The spectral measurement range was from 300 to 700 nm. The results obtained show that for composite scintillators based on crystalline gran- ules of stilbene there is strong light absorption at 360 nm, while the material was practically trans- parent at 700 nm. The intensity of light transmit- ted through the composite scintillator is decreased with higher thickness, which is related to an increase in the number of layers of light-scattering granules. 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 4,5 5,0 1x103 2x103 3x103 4x103 5x103 6x103 7x103 single crystal 30 mm 3mm N um be r o f p ho to ns P Average grain size L av , mm alpha particles 239Pu Fig.6. Number of light photons as function of the average size of crystalline stilbene granules for multi- layered composite scintillators ⊘ 30 mm × 20 mm (circles) and single-layered composite scintillators ⊘ 30 mm (squares) The transparence dependence on the average granule size is of the same character as the similar dependence of the number of photons. For single- layer systems practically no effect of the grain size is observed, while for multi-layered systems smaller granule size, which means larger contribution from the scattering boundaries, both scintillation signal and transmission are decreased, which should be accounted for in development of multi-layered scin- tillators [8, 15, 16]. 3.2. Detectors with unlimited size of the input window The main advantage of composite scintillators, as compared with structurally perfect organic single crystals, is the possibility to create radiation detec- tors with no limitations on the input window size and shape. For scintillators of large area, a problem emerges due to possible non-uniformity of the light signal obtained in irradiation of different points of the scintillator surface. For our studies, we chose, as an example, composition detectors of diameter 200 mm. This size was considered as sufficient for check-up of uniformity of scintillation characteristics [17]. The scatter of relative light output values mea- sured in different regions of composite scintillator of 200 mm diameter did not exceed 1%, i.e., less than the standard 5% error of light output measurements. Thus, it can be concluded that our proposed chain of technological procedures allows preparation of uni- form composite detectors with large output windows. Technological preparation procedures of composite scintillators impose no limitations on the area and shape of the input window; however, such limita- tions can be due to other factors, e.g., conditions of transportation and assembling of the detector. CCoonnnneeccttiioonn lliinnee Fig.7. Connection of separate parts of the composite scintillator Fig.7 shows an approach to this problem. First, sam- ples of smaller size are fabricated, which are then glued together by a non-scintillating dielectric gel. The connection line is indicated by arrow [16]. 3.3. Technological features of preparation of composite scintillators for different applications. Our technology allows introduction of granules of any nature into a binding base. Thus, application pos- sibilities of composite scintillators for different tasks are probably the highest as compared with other scin- tillation systems. The technological chain for preparation of com- posite scintillation materials on the basis of crys- talline granules of stilbene and p-terphenyl (Fig.8, path I) was the first step in creation of new scin- tillation materials [1, 18, 19]. We have noticed that properties of the obtained composite scintillators are weakly dependent upon structural perfectness of the initial organic crystals. We made an attempt to make the fabrication process of organic scintillators cheaper and simpler, taking stilbene single crystals as exam- ple (see Fig.8, path II). The most energy-consuming and expensive stage of preparation of composite scintillators is the pro- cess of growth of structurally perfect single crystals. For single crystal growth, preliminary purification of the raw material is carried out by method of direc- tional crystallization. The primary crystal obtained has rather large number of defects, and such sample cannot be directly used as a bulky single crystalline scintillator. In preparation of crystalline granules by cryogenic fragmentation, the primary crystal is frag- mented over the defects into many micro-single crys- tals. 94 Calculated values of the local field strength Eloc created by the pair of polaron states M− p and M+ p in anthracene crystal Technological Sample based on granules Sample based on granules operations of grown single crystal of primary crystal Raw material purification by 168 168 directional crystallization, hours Preparation of ampoule with 7 – raw material for growth, hours Single crystal growth*, hours 240 – Fragmentation at low temperature, hours 1.5 1.5 Preparation of scintillator (selection of fractions, introduction into binder 61 61 and binder polymerization), hours Total, hours 477,5 230,5 * For single crystal sample of 20 mm diameter and 10 mm height. With larger volume of required raw material, the difference between the required rime by two methods increases. The obtained granules were separated into fractions of different sizes, and composite scintillators were fabri- cated using technological procedures worked out in our studies. I.e., with our approach, we can obtain composite scintillators omitting the stage of growing single crystals of high structural perfectness. Duration of technological operations in preparation of organic scintillators is shown in Table. Our studies have shown that composite scintil- lators prepared from crystalline granules of stilbene obtained from the primary crystal (after raw mate- rial purification by directional crystallization) have as good scintillation characteristics as composite scintil- lators prepared from granules obtained from a pre- grown single crystal of high structural perfection [18]. Fig.8. Flow chart of technological chain for prepa- ration of composite scintillators: I, II – on the basis of crystalline granules of stilbene and p-terphenyl us- ing traditional and modified (i.e., without stage of grow- ing structurally perfect single crystal) technology, respec- tively; III – on the basis of crystalline granules of gadolin- ium silicate (Ce:GSO) or pyrosilicate (Ce:GPS) activated by Ce Path III in Fig.8 demonstrates technological opera- tions of preparation of composite scintillators on the ba- sis of crystalline granules of gadolinium silicate (Ce:GSO) or pyrosilicate (Ce:GPS) activated by Ce [19]. Such scin- tillators are efficient detectors of thermal neutrons (see Chapter 2.2). 3.4. Possibility to use composite scintillators under high radiation loads. Prospects of increasing radiation stability of composite scintillators. With a new generation of accelerators, such as, e.g., LHC CERN (Switzerland), irradiation intensity of detec- tors used in such installations has substantially increased. Thus, for the end-cap hadronic calorimeter (Hadron End- cap (He)) of CMS detector CMS (LHC CERN) they use scintillation detecting plates (tiles), with some of them located near the beam axis, where particle flux intensity is high, and correspondingly high are the dose loads. Af- ter 10 years of operation of CMS-detector, the total dose reaches 10 Mrad at average dose rate 1 Mrad/year or 0.0001 Mrad/hour. Therefore, there is a constantly growing interest in in- creasing the radiation stability of scintillators. We have made a first step in this direction. We obtained infor- mation on radiation stability of materials that can be used as a base for composite scintillators. These mate- rials are industrially produced gels required for creation of radiation-resistant detectors on their base [20]. This justifies our search in this direction. 4. CONCLUSIONS Analysis of the results obtained for scintillation charac- teristics of composite scintillators allows us to make the following conclusions: 1. We have developed composite scintillators com- posed of crystalline granules introduced into an organo- silicon base. The obtained scintillation materials are not hygroscopic, non-combustible, have no technological limi- tations on the size and shape of the input window. These materials show selectivity to detected signals, good scin- tillation characteristics, as well as high spatial uniformity of the scintillation signal. 2. A procedure has been developed for connection of separate parts of composite scintillators, which allows fabrication of scintillators with really unlimited area of the input window. This is achieved by connecting sepa- rate parts in assembling the scintillator at location of its application. 3. It has been shown that the developed technology can be used not only for traditional organic scintillation 95 materials, but also for materials which cannot be grown from the melt as bulky crystals. 4. The obtained information on radiation stability of gel dielectric bases allows us to state that the use of such materials for preparation of composite scintillators is one of the promising directions in improvement of character- istics of detecting devices. ACKNOWLEDGEMENTS This work was supported by the State Fund for Funda- mental Research of Ukraine (project No. F58/06, ”The effect of large radiation doses on scintillation and optical properties of novel types of organic detectors”). References 1. Patent 86136, Ukraine, IPC 51 G01T 1/20, G01T 3/00. N a200708433 ; appl. 23.07.07 ; publ. 25.03.2009, Biul. N6. 2. B.V.Grinyov, N.L.Karavaeva, Y.V.Gerasymov, et al. Gd-Bearing Composite Scintillators as the New Thermal Neutron Detectors // IEEE Trans. on Nucl. Sci. 2011, v. 58, N1, p. 339-346. 3. N.Z.Galunov, V.P. Seminozhenko. The Theory and Application of the Radioluminescence of Organic Condensed Media. Kiev: ”Naukova Dumka”, 1997, 280 p. [in Russian]. 4. N.L.Karavaeva, N.Z.Galunov, E.V.Martynenko, et al. Combined composite scintillation detector for sep- arate measurements of fast and thermal neutrons // Functional Materials. 2010, v. 17, N4, p. 549-553. 5. N.Z.Galunov, B.V.Grinyov, N.L.Karavaeva et al. Development of new composite scintillation materials based on organic crystalline grains” // IEEE Trans. on Nucl. Sci. 2009, v. 56, N3, p. 904-910. 6. N.Z.Galunov, B.V.Grinyov, J.K.Kim, et al. Novel fast neutron detectors for environmental and medical application // Journal of Nuclear Science and Tech- nology. Supplement 5. 2008, p. 367–370. 7. S.V.Budakovsky, N.Z.Galunov, N.L.Karavaeva, et al. New effective organic scintillators for fast neutron and short-range radiation detection // IEEE Trans. on Nucl. Sci. 2007, v. 54, N6, p. 2734-2740. 8. M.E.Anderson, R.A.Neff. Neutron energy spectra of different size 239Pu-Be (α, n) sources // Nuclear in- struments and Methods. 1972, v. 99, N2, p. 231 – 235. 9. J. Iwanowska, L. Swiderski, M.Moszynski, et al. Neu- tron/gamma discrimination properties of composite scintillation detectors //Journal of Instrumentation. 2011, v. 6, N7, p. 07007 10. S.K. Lee, Y.H.Cho, B.HKang, et.al. Scintillation properties of composite stilbene crystal for neutron detection // Progress in Nuclear Science and Tech- nology. 2011, v. 1, N1, p. 292-295. 11. J.Haruna, J.H.Kaneko, M.Higuchi, et al. Response function measurement of Gd2Si2O5 scintillator for neutrons // Proc. IEEE Nuclear Science Symp. Conf. Rec. 2007, Oct.28 - Nov.3, Havaii, USA, p. 1421-1425. 12. X-Ray Mass Attenuation Coefficients. An agency of the U.S. Department of Commerce. The National In- stitute of Standards and Technology. [Online]. Avail- able: (http://physics.nist.gov/PhysRefData/... .../XrayMassCoef/tab3.html). 13. O. Sidletskiy, B.Grinyov, D.Kurtsev, et al. Lu2xGd2(1−x)SiO5 Single crystals with improved scintillation characteristics: possible mechanisms of improvement // The 10 International Conference on Inorganis Scintillators and their Applications, SCINT, 8–12 June 2009.: book of abstracts. Lotte Hotel Jeju (Korea), 2009. p. 78. 14. O.F.Nemets, Yu.V.Gofman. Handbook on Nuclear Physics, Kiev: ”Naukova Dumka”, 1975, p. 416 [In Russian]. 15. N.Z.Galumov, B.V.Grinyov, N.L.Karavaeva, et al. Organic composite scintillators // Functional Mate- rials for Scintillation Techniques and Biomedicine, Kharkov: “ISMA”, 2012, p. 167–193. [in Russian]. 16. N.Z.Galunov, B.V.Grinyov, N.L.Karavaeva. Single- Layer and Multilayer Composite Scintillators Based on Organic Molecular Crystalline Grains // Confer- ence Record of 2011 NSS-MIC Conference, Valencia, Spain, October 23–29, 2011. p. 1869-1872. 17. N.L.Karavaeva, O.A.Tarasenko. Large diameter composite scintillators // Functional Materials. 2010, v. 17, N3, p. 379-385. 18. Patent 37010, Ukraine, IPC51 G01T 1/00, G01T 3/00. N u 200808206 ; appl. 17.06.2008 ; publ. 10.11.2008, Biul. N21. 19. Patent 94678, Ukraine, IPC51 G01T 1/20, G01T 3/00. N a201007067 ; appl. 07.06.10 ; publ. 25.05.2011 , Biul. N10. 20. A.Yu.Boiaryntsev, N.Z.Galunov, N.L.Karavaeva, et al. Study of radiation-resistant gel bases for compos- ite detectors // Functional Materials. 2013, v. 20, N6, p. 471–476. 96 ÊÎÌÏÎÇÈÖÈÎÍÍÛÅ ÑÖÈÍÒÈËËßÒÎÐÛ ÊÀÊ ÍÎÂÛÉ ÂÈÄ ÑÖÈÍÒÈËËßÖÈÎÍÍÎÃÎ ÌÀÒÅÐÈÀËÀ Í.Ë.Êàðàâàåâà Äëÿ ðàäèîýêîëîãè÷åñêèõ çàäà÷ íàìè áûë ðàçðàáîòàí íîâûé âèä ñöèíòèëëÿöèîííîãî ìàòåðèàëà � êîìïîçèöè- îííûå ñöèíòèëëÿòîðû, ñîñòîÿùèå èç äèýëåêòðè÷åñêîãî ãåëÿ â êà÷åñòâå îñíîâû, â êîòîðóþ âíåäðåíû ãðàíóëû ñöèíòèëëèðóþùåãî âåùåñòâà. Ïîêàçàíî, ÷òî äàííûé ìàòåðèàë ìîæåò ñîçäàâàòüñÿ êàê íà îñíîâå îðãàíè÷åñêèõ, òàê è íåîðãàíè÷åñêèõ ãðàíóë. Ïåðâûå ïîçâîëÿþò ñîçäàâàòü ýôôåêòèâíûå äåòåêòîðû áûñòðûõ íåéòðîíîâ ñî ñòåïåíüþ ðàçäåëåíèÿ íåéòðîíîâ íà ôîíå ãàììà-èçëó÷åíèÿ, áëèçêîé ê îðãàíè÷åñêèì ìîíîêðèñòàëëàì. Âòîðûå ÿâèëèñü ýôôåêòèâíûìè äåòåêòîðàìè òåïëîâûõ íåéòðîíîâ, à âàðüèðîâàíèå ðàçìåðîâ èõ ãðàíóë ïîçâîëèëî ñó- ùåñòâåííî óìåíüøèòü âëèÿíèå ôîíîâûõ èçëó÷åíèé. Îòäåëüíûå ôðàãìåíòû ñöèíòèëëÿòîðà ìîæíî ñîåäèíÿòü âìåñòå, ñîçäàâàÿ áåñêîíå÷íûå ïëîñêîñòè. Âîçìîæíîñòü âûáîðà áîëåå ðàäèàöèîííî-ñòîéêèõ îñíîâ, ÷åì ñòàí- äàðòíûå ñöèíòèëëÿöèîííûå îñíîâû, è ëþáûõ ñöèíòèëëÿöèîííûõ âåùåñòâ äëÿ ñîçäàíèÿ ãðàíóë ïîçâîëÿåò çà- äóìàòüñÿ î âîçìîæíîñòè èñïîëüçîâàíèÿ òàêîãî òåõíîëîãè÷åñêîãî ïîäõîäà íå òîëüêî äëÿ çàäà÷ ðàäèîýêîëîãèè (ñâåðõìàëûå ïîòîêè), íî è äëÿ çàäà÷ ôèçèêè âûñîêèõ ýíåðãèé. ÊÎÌÏÎÇÈÖIÉÍI ÑÖÈÍÒÈËßÒÎÐÈ ßÊ ÍÎÂÈÉ ÂÈÄ ÑÖÈÍÒÈËßÖIÉÍÎÃÎ ÌÀÒÅÐIÀËÓ Í.Ë.Êàðàâà¹âà Äëÿ ðàäiîåêîëîãi÷íèõ çàäà÷ íàìè áóâ ðîçðîáëåíèé íîâèé âèä ñöèíòèëÿöiéíîãî ìàòåðiàëó � êîìïîçèöiéíi ñöèí- òèëÿòîðè, ùî ñêëàäàþòüñÿ ç äiåëåêòðè÷íîãî ãåëþ â ÿêîñòi îñíîâè, â ÿêó ââåäåíi ãðàíóëè ñöèíòèëþþ÷î¨ ðå÷î- âèíè. Ïîêàçàíî, ùî äàíèé ìàòåðiàë ìîæå ñòâîðþâàòèñÿ ÿê íà îñíîâi îðãàíi÷íèõ, òàê i íåîðãàíi÷íèõ ãðàíóë. Ïåðøi äîçâîëÿþòü ñòâîðþâàòè åôåêòèâíi äåòåêòîðè øâèäêèõ íåéòðîíiâ ç ñòóïåíåì ïîäiëó íåéòðîíiâ íà ôîíi ãàììà- âèïðîìiíþâàííÿ, áëèçüêîþ äî îðãàíi÷íèõ ìîíîêðèñòàëiâ. Äðóãi ¹ åôåêòèâíèìè äåòåêòîðàìè òåïëîâèõ íåéòðîíiâ, à âàðiþâàííÿ ðîçìiðiâ ¨õ ãðàíóë äîçâîëèëî iñòîòíî çìåíøèòè âïëèâ ôîíîâèõ âèïðîìiíþâàíü. Îêðå- ìi ÷àñòèíè ñöèíòèëÿòîðà ìîæíà ç'¹äíóâàòè ðàçîì, ñòâîðþþ÷è íåñêií÷åííi ïëîùi. Ìîæëèâiñòü âèáîðó áiëüø ðàäiàöiéíîñòiéêèõ îñíîâ, íiæ ñòàíäàðòíi ñöèíòèëÿöiéíi îñíîâè, òà áóäü-ÿêèõ ñöèíòèëÿöiéíèõ ðå÷îâèí äëÿ ñòâî- ðåííÿ ãðàíóë äîçâîëÿ¹ çàìèñëèòèñÿ ïðî ìîæëèâiñòü âèêîðèñòàííÿ òàêîãî òåõíîëîãi÷íîãî ïiäõîäó íå òiëüêè äëÿ çàäà÷ ðàäiîåêîëîãi¨ (íàäñëàáêi ïîòîêè), à é äëÿ çàäà÷ ôiçèêè âèñîêèõ åíåðãié. 97