Spectral method in the quantum theory of axial channeling

The quantization of the transverse motion energy in the continuous potentials of atomic strings and planes can take place under passage of fast charged particles through crystals. The energy levels for electron moving in axial channeling regime in a system of parallel [110] atomic strings of a silic...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Вопросы атомной науки и техники
Дата:2014
Автори: Shul'ga, N.F., Syshchenko, V.V., Neryabova, V.S.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2014
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/80493
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Spectral method in the quantum theory of axial channeling / N.F. Shul'ga, V.V. Syshchenko, V.S. Neryabova // Вопросы атомной науки и техники. — 2014. — № 5. — С. 111-114. — Бібліогр.: 7 назв. — анг.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-80493
record_format dspace
spelling Shul'ga, N.F.
Syshchenko, V.V.
Neryabova, V.S.
2015-04-18T14:51:23Z
2015-04-18T14:51:23Z
2014
Spectral method in the quantum theory of axial channeling / N.F. Shul'ga, V.V. Syshchenko, V.S. Neryabova // Вопросы атомной науки и техники. — 2014. — № 5. — С. 111-114. — Бібліогр.: 7 назв. — анг.
1562-6016
PACS: 02.60.Cb, 03.65.Ge, 05.45.Mt, 05.45.Pq, 61.85.+p
https://nasplib.isofts.kiev.ua/handle/123456789/80493
The quantization of the transverse motion energy in the continuous potentials of atomic strings and planes can take place under passage of fast charged particles through crystals. The energy levels for electron moving in axial channeling regime in a system of parallel [110] atomic strings of a silicon crystal are found for the electron energy of order of several hundreds of MeV, when a total number of energy levels becomes large. High resolution of the spectral method permits its usage for investigation of quantum chaos problem.
При прохождении быстрых заряженных частиц через кристалл может иметь место квантование энергии поперечного движения в непрерывных потенциалах атомных цепочек и плоскостей. Найдены уровни энергии электрона, движущегося в режиме аксиального каналирования в системе параллельных цепочек [110] кристалла кремния, для случая электрона с энергией порядка нескольких сотен МэВ, когда число уровней энергии становится велико. Высокая разрешающая способность метода позволяет использовать его для исследования проблемы квантового хаоса.
При проходженнi швидких заряджених часток крiзь кристал може бути наявним квантування енергiї поперечного руху в неперервних потенцiалах атомних ланцюжкiв та площин. Виявлено рiвнi енергiї електрона, що рухається у режимi аксiального каналювання у системi паралельних ланцюжкiв [110] кристала кремнiю, для випадка електрона з енергiєю близько кiлькох сотень МеВ, коли число рiвнiв енергiї стає великим. Висока роздiльна здатнiсть методу дозволяє використовувати його для дослiдження проблеми квантового хаосу.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Электродинамика
Spectral method in the quantum theory of axial channeling
Спектральный метод в квантовой теории аксиального каналирования
Спектральний метод в квантовiй теорii аксиального каналювання
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Spectral method in the quantum theory of axial channeling
spellingShingle Spectral method in the quantum theory of axial channeling
Shul'ga, N.F.
Syshchenko, V.V.
Neryabova, V.S.
Электродинамика
title_short Spectral method in the quantum theory of axial channeling
title_full Spectral method in the quantum theory of axial channeling
title_fullStr Spectral method in the quantum theory of axial channeling
title_full_unstemmed Spectral method in the quantum theory of axial channeling
title_sort spectral method in the quantum theory of axial channeling
author Shul'ga, N.F.
Syshchenko, V.V.
Neryabova, V.S.
author_facet Shul'ga, N.F.
Syshchenko, V.V.
Neryabova, V.S.
topic Электродинамика
topic_facet Электродинамика
publishDate 2014
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Спектральный метод в квантовой теории аксиального каналирования
Спектральний метод в квантовiй теорii аксиального каналювання
description The quantization of the transverse motion energy in the continuous potentials of atomic strings and planes can take place under passage of fast charged particles through crystals. The energy levels for electron moving in axial channeling regime in a system of parallel [110] atomic strings of a silicon crystal are found for the electron energy of order of several hundreds of MeV, when a total number of energy levels becomes large. High resolution of the spectral method permits its usage for investigation of quantum chaos problem. При прохождении быстрых заряженных частиц через кристалл может иметь место квантование энергии поперечного движения в непрерывных потенциалах атомных цепочек и плоскостей. Найдены уровни энергии электрона, движущегося в режиме аксиального каналирования в системе параллельных цепочек [110] кристалла кремния, для случая электрона с энергией порядка нескольких сотен МэВ, когда число уровней энергии становится велико. Высокая разрешающая способность метода позволяет использовать его для исследования проблемы квантового хаоса. При проходженнi швидких заряджених часток крiзь кристал може бути наявним квантування енергiї поперечного руху в неперервних потенцiалах атомних ланцюжкiв та площин. Виявлено рiвнi енергiї електрона, що рухається у режимi аксiального каналювання у системi паралельних ланцюжкiв [110] кристала кремнiю, для випадка електрона з енергiєю близько кiлькох сотень МеВ, коли число рiвнiв енергiї стає великим. Висока роздiльна здатнiсть методу дозволяє використовувати його для дослiдження проблеми квантового хаосу.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/80493
citation_txt Spectral method in the quantum theory of axial channeling / N.F. Shul'ga, V.V. Syshchenko, V.S. Neryabova // Вопросы атомной науки и техники. — 2014. — № 5. — С. 111-114. — Бібліогр.: 7 назв. — анг.
work_keys_str_mv AT shulganf spectralmethodinthequantumtheoryofaxialchanneling
AT syshchenkovv spectralmethodinthequantumtheoryofaxialchanneling
AT neryabovavs spectralmethodinthequantumtheoryofaxialchanneling
AT shulganf spektralʹnyimetodvkvantovoiteoriiaksialʹnogokanalirovaniâ
AT syshchenkovv spektralʹnyimetodvkvantovoiteoriiaksialʹnogokanalirovaniâ
AT neryabovavs spektralʹnyimetodvkvantovoiteoriiaksialʹnogokanalirovaniâ
AT shulganf spektralʹniimetodvkvantoviiteoriiaksialʹnogokanalûvannâ
AT syshchenkovv spektralʹniimetodvkvantoviiteoriiaksialʹnogokanalûvannâ
AT neryabovavs spektralʹniimetodvkvantoviiteoriiaksialʹnogokanalûvannâ
first_indexed 2025-11-24T11:37:29Z
last_indexed 2025-11-24T11:37:29Z
_version_ 1850845412684988416
fulltext ELECTRODYNAMICS SPECTRAL METHOD IN THE QUANTUM THEORY OF AXIAL CHANNELING N.F.Shul’ga1, V.V.Syshchenko2∗, V.S.Neryabova2 1National Science Center ”Kharkov Institute of Physics and Technology”, 61108, Kharkov, Ukraine; 2Belgorod State University, 308015, Belgorod, Russian Federation (Received April 6, 2013) The quantization of the transverse motion energy in the continuous potentials of atomic strings and planes can take place under passage of fast charged particles through crystals. The energy levels for electron moving in axial channeling regime in a system of parallel [110] atomic strings of a silicon crystal are found for the electron energy of order of several hundreds of MeV, when a total number of energy levels becomes large. High resolution of the spectral method permits its usage for investigation of quantum chaos problem. PACS: 02.60.Cb, 03.65.Ge, 05.45.Mt, 05.45.Pq, 61.85.+p 1. INTRODUCTION The motion of a fast charged particle in a crystal near one of crystallographic axes or planes is determined mainly by the uniform potential that is the potential of the crystal lattice averaged along the axis or plane near which the motion takes the place. The longitudi- nal component of the particle’s momentum p∥ parallel to the crystallographic axis or plane is conserved in such field. So, the problem on the particle’s motion in the crystal is reduced to the two-dimensional problem of its motion in the transverse plane. The finite mo- tion in the potential wells formed by the uniform po- tentials of the atomic axes and planes is known as the axial or planar channeling, respectively (see [1, 2] and references therein). The quantum effects can mani- fest themselves during such motion. Particularly, the quantization of the transverse motion energy can take the place. The potential wells formed by the uni- form string or plane potentials have the complicated shape that does not permit the analytical integration of the Schrödinger equation and makes necessary the development of numerical methods for searching the transverse motion energy levels and other quantum characteristics of the particle’s motion in the uni- form potentials of the atomic planes and strings of the crystal. In the present article we apply the so-called spec- tral method [3] to the search of energy eigenvalues in the two-dimensional case of axial channeling (for [110] strings of the silicon crystal as an example). This method had been successfully used earlier in the one-dimensional problem concerning planar channel- ing [4]. 2. SPECTRAL METHOD The spectral method of searching the energy eigen- values of the quantum system [3] is based on the computation of correlation function for the time de- pendent wave functions of the system at the initial and current time momenta, Ψ(x, y, 0) and Ψ(x, y, t): P (t) = ∫ ∞ −∞ ∫ ∞ −∞ Ψ∗(x, y, 0)Ψ(x, y, t) dxdy. (1) Fourier transform of this correlation function, PE = ∫ ∞ −∞ P (t) exp(iEt/h̄) dt, (2) contains information about the energy eigenval- ues. Indeed, every solution of the time-dependent Schrödinger equation ĤΨ(x, y, t) = ih̄ ∂ ∂t Ψ(x, y, t) (3) could be expressed as the superposition Ψ(x, y, t) = ∑ n,j An,jun,j(x, y) exp(−iEnt/h̄) (4) of the Hamiltonian’s eigenfunctions un,j(x, y), Ĥun,j(x, y) = Enun,j(x, y), where the index j is used to distinguish the degen- erate states corresponding to the energy En. Com- putation of the correlation function (1) for the wave function of the form (4) gives P (t) = ∑ n,n′,j,j′ exp(−iEn′t/h̄)A∗ n,jAn′,j′ × ∫ ∞ −∞ ∫ ∞ −∞ u∗n,j(x, y)un′,j′(x, y)dxdy = ∗Corresponding author E-mail address: syshch@yandex.ru ISSN 1562-6016. PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2014, N5 (93). Series: Nuclear Physics Investigations (63), p.111-114. 111 = ∑ n,n′,j,j′ exp(−iEn′t/h̄)A∗ n,jAn′,j′δnn′δjj′ = = ∑ n,j |An,j |2 exp(−iEnt/h̄). (5) Fourier transformation of (5) leads to the expression PE = 2πh̄ ∑ n,j |An,j |2 δ(E − En). (6) We see that the Fourier transformation of the cor- relation function looks like a series of δ-form peaks, positions of which indicate the energy eigenvalues. So, the computation of the energy levels for the given system consists of the following steps: 1. Choosing the arbitrary initial wave function Ψ(x, y, 0). The only conditions of the choice are: — tendency to zero under x, y → ±∞, neces- sary for every bound state; — wide spectrum that covers the depth of the potential well; — absence of any symmetry which could lead to the lack of some eigenfunctions in the super- position (4). Asymmetric Gaussian waveform would be a good choice for the most cases. 2. Numerical integration of the time-dependent Schrödinger equation (3) with the initial value Ψ(x, y, 0) for the discrete series of the time mo- menta; the value of the time step ∆t as well as other computational details are discussed in [3, 4, 5, 6]. 3. Computation of the integral (1) for every dis- crete time momentum from t = 0 to some max- imal t = T . Subsequent integration of the ob- tained correlation function P (t) with the expo- nent in (2) is carried out over the finite time interval: PE = ∫ T 0 P (t) exp(iEt/h̄) dt. (7) As a result, we obtain a series of peaks of fi- nite width (inverse proportional to T ) instead of infinitely narrow δ-like peaks (6). 3. STATISTICAL PROPERTIES OF THE ENERGY LEVELS The motion of the fast charged particle in a crys- tal under small angle ψ to the crystallographic axis densely packed with atoms could be (with good ac- curacy) described as a motion in the uniform string potential (e.g. the potential of the atomic string av- eraged along its axis) [1, 2]. The longitudinal (e.g. parallel to the string axis) component of the particle’s momentum p∥ is conserved in such a field. The mo- tion in the transverse plane will be described in this case by the two-dimensional analog of Schrödinger equation [1, Ch. 7, §53]{ − h̄2 2E∥/c2 ( ∂2 ∂x2 + ∂2 ∂y2 ) + U(x, y) } Ψ(x, y, t) = = ih̄ ∂ ∂t Ψ(x, y, t), (8) in which the value E∥/c 2 plays the role of the parti- cle’s mass (where E∥ = √ m2c4 + p2∥c 2 ). The uniform string potential could be approxi- mated by the formula [1, Ch. 6, §41] U1(x, y) = −U0 ln ( 1 + βR2 x2 + y2 + αR2 ) , (9) where for the [110] string of silicon U0 = 60.0 eV, α = 0.37, β = 3.5, R = 0.194 Å (Thomas-Fermi ra- dius); the least distance between two parallel strings is a/4 = 5.431/4 Å (where a is the lattice period). So, the uniform potential, in which the electron’s trans- verse motion takes the place, will be described by the two-well function (Fig. 1) U(x, y) = U1(x, y + a/8) + U1(x, y − a/8) (10) (neglecting the influence of far-away strings). The finite motion of the electron in such potential (cor- responding to negative values of the transverse mo- tion energy E⊥) is known as axial channeling [1]. −2 −1 0 1 2 −2 −1 0 1 2 −140 −120 −100 −80 −60 −40 −20 0 y , Angstrom x , Angstrom U (x , y ) , eV Fig.1. Potential energy (10) of the electron in the field of uniform potentials of two neighboring atomic strings [110] of a silicon crystal Classical motion of the particle in the axial sym- metric potential (9) of the single string is regular because of the presence of two integrals of motion: transverse energy and angular momentum. The clas- sical motion in the potential (10) for the particle with the transverse energy above the potential saddle point is chaotic [1]. The studying of quantum chaos means investiga- tion of the behavior of quantum systems, which clas- sical analogs allow the dynamical chaos [7]. One of the signatures of the quantum chaos phenomenon are 112 the statistical properties of the large massive of the energy levels of the system in the semiclassical do- main, where the levels lie densely to each other. As it stated in [7], for regular motion the differ- ent energy levels do not interact with each other, that leads to the random distribution of the distances s be- tween neighboring energy levels with the exponential distribution function p(s) = 1 D exp(−s/D), (11) where D is the average distance between neighboring energy levels on the spectral interval under consider- ation. For the chaotic motion the phenomenon of re- pulsion of levels takes the place, that in typical cases leads to Wigner distribution p(s) = πs 2D2 exp(−πs2/4D2). (12) Such behavior has been observed for the particle in billiard with mirror walls and for excited states of some nuclei. The distributions of inter-level distances for single (9) and double (10) string potentials are presented on Fig.2. We see that the behavior of levels corresponds on a certain extent to the predictions (11) and (12). 0 0.05 0.1 0.15 0.2 0.25 0 5 10 15 20 25 30 35 40 45 50 s , eV N um be r of le ve ls 0 0.05 0.1 0.15 0 10 20 30 40 50 60 s , eV N um be r of le ve ls Fig.2. Distributions of the distances between neighboring levels in the single (upper plot) and double (lower plot) potential wells on the interval −11 ≤ E⊥ ≤ 2.5 eV for the electron’s longitudinal energy E∥ = 200 MeV, in comparison with the exponential (11) (dashed line) and Wigner (12) (solid line) distribution functions. The resolution of levels is not worse than s = 0.02 eV 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0 5 10 15 20 25 30 35 40 45 50 s , eV N um be r of le ve ls 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0 5 10 15 20 25 30 35 40 45 50 s , eV N um be r of le ve ls Fig.3. The same as on Fig.2 for even states 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0 5 10 15 20 25 30 35 40 45 50 s , eV N um be r of le ve ls 0 0.05 0.1 0.15 0 5 10 15 20 25 30 35 40 45 50 s , eV N um be r of le ve ls Fig.4. The same as on Fig.2 for odd states However, it is emphasized in [7] that only the lev- els corresponding the eigenstates with the same sym- metry could interact with each other. The distribu- 113 tions of inter-level distances for the states with pos- itive and negative parity are plotted on Figs. 3 and 4. We see that the obtained distributions are rather far from the predictions (11) and (12). 6. CONCLUSIONS The distributions of inter-level distances between lev- els of the transverse motion energy for the axial chan- neling electron in the uniform potential of the single [110] atomic string of silicon crystal as well as the po- tential of two neighboring strings are calculated using the spectral method of the energy levels searching. The results demonstrate that statistical properties of the massive of energy levels in this case do not agree to the predictions of [7] for regular and chaotic mo- tion. This work is supported in part by internal grant of Belgorod State University, and the government con- tract 2.2694.2011 dated 18.01.2012. References 1. A.I. Akhiezer, N.F. Shul’ga. High-Energy Electrody- namics in Matter. Amsterdam, Gordon and Breach, 1996. 2. U.I. Uggerhøj. Rev. Mod. Phys. 2005, v. 77, p. 1131. 3. M.D. Feit, J.A. Fleck, Jr.A. Steiger // J. Comput. Phys. 1982, v. 47, p. 412. 4. A.V.Kozlov, N.F. Shul’ga, V.A.Cherkaskiy // Phys. Lett. 2010, v.A374, p. 4690. 5. N.F. Shul’ga, V.V. Syshchenko, V.S.Neryabova // Journal of Surface Investigation. X-ray, Syn- chrotron and Neutron Techniques. 2013, v. 7, N2, p. 279. 6. N.F. Shul’ga, V.V. Syshchenko, V.S.Neryabova // Nucl. Instr. and Meth. 2013. 7. Yu.L.Bolotin, V.A.Cherkaskiy. Energetic spec- tra: from heroic past to chaotic present // Prob- lems of Contemporay Physics: Collected papers / N.F. Shul’ga (Ed.), Kharkov, NSC KIPT, 2008, 416 p. (in Russian). ÑÏÅÊÒÐÀËÜÍÛÉ ÌÅÒÎÄ Â ÊÂÀÍÒÎÂÎÉ ÒÅÎÐÈÈ ÀÊÑÈÀËÜÍÎÃÎ ÊÀÍÀËÈÐÎÂÀÍÈß Í.Ô.Øóëüãà, Â.Â.Ñûùåíêî, Â.Ñ.Íåðÿáîâà Ïðè ïðîõîæäåíèè áûñòðûõ çàðÿæåííûõ ÷àñòèö ÷åðåç êðèñòàëë ìîæåò èìåòü ìåñòî êâàíòîâàíèå ýíåð- ãèè ïîïåðå÷íîãî äâèæåíèÿ â íåïðåðûâíûõ ïîòåíöèàëàõ àòîìíûõ öåïî÷åê è ïëîñêîñòåé. Íàéäåíû óðîâ- íè ýíåðãèè ýëåêòðîíà, äâèæóùåãîñÿ â ðåæèìå àêñèàëüíîãî êàíàëèðîâàíèÿ â ñèñòåìå ïàðàëëåëüíûõ öåïî÷åê [110] êðèñòàëëà êðåìíèÿ, äëÿ ñëó÷àÿ ýëåêòðîíà ñ ýíåðãèåé ïîðÿäêà íåñêîëüêèõ ñîòåí ÌýÂ, êîãäà ÷èñëî óðîâíåé ýíåðãèè ñòàíîâèòñÿ âåëèêî. Âûñîêàÿ ðàçðåøàþùàÿ ñïîñîáíîñòü ìåòîäà ïîçâîëÿåò èñïîëüçîâàòü åãî äëÿ èññëåäîâàíèÿ ïðîáëåìû êâàíòîâîãî õàîñà. ÑÏÅÊÒÐÀËÜÍÈÉ ÌÅÒÎÄ Â ÊÂÀÍÒÎÂIÉ ÒÅÎÐI�I ÀÊÑÈÀËÜÍÎÃÎ ÊÀÍÀËÞÂÀÍÍß Ì.Ô.Øóëüãà, Â.Â.Ñèùåíêî, Â.Ñ.Íåðÿáîâà Ïðè ïðîõîäæåííi øâèäêèõ çàðÿäæåíèõ ÷àñòîê êðiçü êðèñòàë ìîæå áóòè íàÿâíèì êâàíòóâàííÿ åíåðãi¨ ïîïåðå÷íîãî ðóõó â íåïåðåðâíèõ ïîòåíöiàëàõ àòîìíèõ ëàíöþæêiâ òà ïëîùèí. Âèÿâëåíî ðiâíi åíåðãi¨ åëåêòðîíà, ùî ðóõà¹òüñÿ ó ðåæèìi àêñiàëüíîãî êàíàëþâàííÿ ó ñèñòåìi ïàðàëåëüíèõ ëàíöþæêiâ [110] êðèñòàëà êðåìíiþ, äëÿ âèïàäêà åëåêòðîíà ç åíåðãi¹þ áëèçüêî êiëüêîõ ñîòåíü ÌåÂ, êîëè ÷èñëî ðiâíiâ åíåðãi¨ ñò๠âåëèêèì. Âèñîêà ðîçäiëüíà çäàòíiñòü ìåòîäó äîçâîëÿ¹ âèêîðèñòîâóâàòè éîãî äëÿ äîñëiä- æåííÿ ïðîáëåìè êâàíòîâîãî õàîñó. 114