Cesium, strontium and sodium diffusion in magnesium kalium phosphates system

Nuclear-physical methods have been used for determination of diffusion coefficient of Cs, Na, Sr and Ga in samples on the basis of Ceramicrete which contained simulators of a liquid radioactive waste of "Hanford-1", KW and KE Basin sludge, 10% wollastonite and 0.3% of boric acid. After an...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Вопросы атомной науки и техники
Дата:2014
Автори: Dikiy, N.P., Dovbnya, A.N., Lyashko, Yu.V., Medvedev, D.V., Medvedeva, E.P., Repikhov, O.A., Saenko, S.Y., Shkuropatenko, V.A., Tarasov, R.V., Fedorets, I.D., Khlapova, N.P.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2014
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/80505
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Cesium, strontium and sodium diffusion in magnesium kalium phosphates system / N.P. Dikiy, A.N. Dovbnya, Yu.V. Lyashko, D.V. Medvedev, E.P. Medvedeva, O.A. Repikhov, S.Y. Saenko, V.A. Shkuropatenko, R.V. Tarasov, I.D. Fedorets, N.P. Khlapova // Вопросы атомной науки и техники. — 2014. — № 5. — С. 39-44. — Бібліогр.: 10 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-80505
record_format dspace
spelling Dikiy, N.P.
Dovbnya, A.N.
Lyashko, Yu.V.
Medvedev, D.V.
Medvedeva, E.P.
Repikhov, O.A.
Saenko, S.Y.
Shkuropatenko, V.A.
Tarasov, R.V.
Fedorets, I.D.
Khlapova, N.P.
2015-04-18T15:56:55Z
2015-04-18T15:56:55Z
2014
Cesium, strontium and sodium diffusion in magnesium kalium phosphates system / N.P. Dikiy, A.N. Dovbnya, Yu.V. Lyashko, D.V. Medvedev, E.P. Medvedeva, O.A. Repikhov, S.Y. Saenko, V.A. Shkuropatenko, R.V. Tarasov, I.D. Fedorets, N.P. Khlapova // Вопросы атомной науки и техники. — 2014. — № 5. — С. 39-44. — Бібліогр.: 10 назв. — англ.
1562-6016
PACS: 66.30.-h; 81.05.Rm
https://nasplib.isofts.kiev.ua/handle/123456789/80505
Nuclear-physical methods have been used for determination of diffusion coefficient of Cs, Na, Sr and Ga in samples on the basis of Ceramicrete which contained simulators of a liquid radioactive waste of "Hanford-1", KW and KE Basin sludge, 10% wollastonite and 0.3% of boric acid. After an irradiation of investigated samples by electrons and brake radiation to a dose 100 and 1 MGy, accordingly, leaching was conducted at temperature 37°C. Values of diffusion coefficient of Cs, Sr, Na changed in process of leaching from units of 10⁻¹⁰ cm²/s till 10⁻¹⁶ ... 10⁻¹⁷ cm²/s, for Ga - from units of 10⁻¹³ cm²/s to 10⁻¹⁶ cm²/s. Decreasing of weight of ceramics in process of leaching during 858 hours irradiated by electrons to a dose 100 MGy, on 14.6 and 18.5% with simulators KE and KW is revealed, accordingly. Decreasing of weight of ceramics in process of leaching during 858 hours, irradiated brake radiation to a dose 1 MGy, on 19.9 and 21.6% with simulators KW and KE, accordingly is revealed. The sums of relations of diffusion coefficient of Na concerning Cs and Sr are in antagonistic dependence on the Cs and Sr content in a matrix on the basis of Ceramicrete.
Ядерно-физические методы были использованы для определения коэффициентов диффузии Cs, Na, Sr и Ga в образцах на основе керамики Ceramicrete, которые содержали имитаторы жидких радиоактивных отходов "Хенфорд-1", KW и KE Basin sludge, 10% волластонита и 0.3% борной кислоты. После облучения исследуемых образцов электронами и тормозным излучением до дозы 100 и 1 МГр, соответственно, было проведено выщелачивание при температуре 37°C. Значения коэффициентов диффузии цезия, стронция, натрия изменялись в процессе выщелачивания от единиц 10⁻¹⁰ см²/с до 10⁻¹⁶ ... 10⁻¹⁷ см²/с, для галлия от единиц 10⁻¹³ см²/с до 10⁻¹⁶ см²/с. Обнаружено уменьшение веса керамики в процессе выщелачивания в течение 858 часов, облученных электронами до дозы 100 МГp, на 14,6 и 18,5% с имитаторами KE и KW, соответственно. Обнаружено уменьшение веса керамики в процессе выщелачивания в течение 858 часа, облученной гамма-квантами до дозы 1 МГp, на 19,9 и 21,6% с имитаторами KW и KE, соответственно. Обнаружено, что суммы отношений коэффициента диффузии натрия относительно цезия и стронция находятся в антагонистической зависимости от содержания цезия и стронция в матрице на основе Ceramicrete.
Ядерно-фiзичнi методи були використанi для визначення коефiцiєнтiв дифузiї Cs, Na, Sr i Ga в зразках на основi керамiки Ceramicrete, якi мiстили iмiтатори рiдких радiоактивних вiдходiв "Хенфорд-1", KW i KE Basin sludge, 10 % волластонiтy i 0.3% борної кислоти. Пiсля опромiнення дослiджуваних зразкiв електронами i гальмiвним випромiнюванням до дози 100 i 1 МГр, вiдповiдно, було проведено вилуговування при температурi 37°C. Значення коефiцiєнтiв дифузiї цезiю, стронцiю, натрiю змiнювалися в процесi вилуговування вiд одиниць 10⁻¹⁰ см²/с до 10⁻¹⁶ ... 10⁻¹⁷ см²/с, для галiю вiд одиниць 10⁻¹³ см²/с до 10⁻¹⁶ см²/с. Виявлено зменшення ваги керамiки в процесi вилуговування протягом 858 годин, опромiнених електронами до дози 100 МГp, на 14,6 i 18,5% з iмiтаторами KE i KW, вiдповiдно. Виявлено зменшення ваги керамiки в процесi вилуговування протягом 858 години, опромiненої гама-квантами до дози 1 МГp, на 19,9 i 21,6% з iмiтаторами KW i KE, вiдповiдно. Виявлено, що суми вiдносин коефiцiєнта дифузiї натрiю до цезiю та стронцiю знаходяться в антагонiстичної залежностi вiд вмiсту цезiю та стронцiю в матрицi на основi Ceramicrete.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Ядерно-физические методы и обработка данных
Cesium, strontium and sodium diffusion in magnesium kalium phosphates system
Диффузия цезия, стронция и натрия в магний калий фосфатной системе
Дифузiя цезiю, стронцiю i натрiю в магнiй калiй фосфатнiй системi
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Cesium, strontium and sodium diffusion in magnesium kalium phosphates system
spellingShingle Cesium, strontium and sodium diffusion in magnesium kalium phosphates system
Dikiy, N.P.
Dovbnya, A.N.
Lyashko, Yu.V.
Medvedev, D.V.
Medvedeva, E.P.
Repikhov, O.A.
Saenko, S.Y.
Shkuropatenko, V.A.
Tarasov, R.V.
Fedorets, I.D.
Khlapova, N.P.
Ядерно-физические методы и обработка данных
title_short Cesium, strontium and sodium diffusion in magnesium kalium phosphates system
title_full Cesium, strontium and sodium diffusion in magnesium kalium phosphates system
title_fullStr Cesium, strontium and sodium diffusion in magnesium kalium phosphates system
title_full_unstemmed Cesium, strontium and sodium diffusion in magnesium kalium phosphates system
title_sort cesium, strontium and sodium diffusion in magnesium kalium phosphates system
author Dikiy, N.P.
Dovbnya, A.N.
Lyashko, Yu.V.
Medvedev, D.V.
Medvedeva, E.P.
Repikhov, O.A.
Saenko, S.Y.
Shkuropatenko, V.A.
Tarasov, R.V.
Fedorets, I.D.
Khlapova, N.P.
author_facet Dikiy, N.P.
Dovbnya, A.N.
Lyashko, Yu.V.
Medvedev, D.V.
Medvedeva, E.P.
Repikhov, O.A.
Saenko, S.Y.
Shkuropatenko, V.A.
Tarasov, R.V.
Fedorets, I.D.
Khlapova, N.P.
topic Ядерно-физические методы и обработка данных
topic_facet Ядерно-физические методы и обработка данных
publishDate 2014
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Диффузия цезия, стронция и натрия в магний калий фосфатной системе
Дифузiя цезiю, стронцiю i натрiю в магнiй калiй фосфатнiй системi
description Nuclear-physical methods have been used for determination of diffusion coefficient of Cs, Na, Sr and Ga in samples on the basis of Ceramicrete which contained simulators of a liquid radioactive waste of "Hanford-1", KW and KE Basin sludge, 10% wollastonite and 0.3% of boric acid. After an irradiation of investigated samples by electrons and brake radiation to a dose 100 and 1 MGy, accordingly, leaching was conducted at temperature 37°C. Values of diffusion coefficient of Cs, Sr, Na changed in process of leaching from units of 10⁻¹⁰ cm²/s till 10⁻¹⁶ ... 10⁻¹⁷ cm²/s, for Ga - from units of 10⁻¹³ cm²/s to 10⁻¹⁶ cm²/s. Decreasing of weight of ceramics in process of leaching during 858 hours irradiated by electrons to a dose 100 MGy, on 14.6 and 18.5% with simulators KE and KW is revealed, accordingly. Decreasing of weight of ceramics in process of leaching during 858 hours, irradiated brake radiation to a dose 1 MGy, on 19.9 and 21.6% with simulators KW and KE, accordingly is revealed. The sums of relations of diffusion coefficient of Na concerning Cs and Sr are in antagonistic dependence on the Cs and Sr content in a matrix on the basis of Ceramicrete. Ядерно-физические методы были использованы для определения коэффициентов диффузии Cs, Na, Sr и Ga в образцах на основе керамики Ceramicrete, которые содержали имитаторы жидких радиоактивных отходов "Хенфорд-1", KW и KE Basin sludge, 10% волластонита и 0.3% борной кислоты. После облучения исследуемых образцов электронами и тормозным излучением до дозы 100 и 1 МГр, соответственно, было проведено выщелачивание при температуре 37°C. Значения коэффициентов диффузии цезия, стронция, натрия изменялись в процессе выщелачивания от единиц 10⁻¹⁰ см²/с до 10⁻¹⁶ ... 10⁻¹⁷ см²/с, для галлия от единиц 10⁻¹³ см²/с до 10⁻¹⁶ см²/с. Обнаружено уменьшение веса керамики в процессе выщелачивания в течение 858 часов, облученных электронами до дозы 100 МГp, на 14,6 и 18,5% с имитаторами KE и KW, соответственно. Обнаружено уменьшение веса керамики в процессе выщелачивания в течение 858 часа, облученной гамма-квантами до дозы 1 МГp, на 19,9 и 21,6% с имитаторами KW и KE, соответственно. Обнаружено, что суммы отношений коэффициента диффузии натрия относительно цезия и стронция находятся в антагонистической зависимости от содержания цезия и стронция в матрице на основе Ceramicrete. Ядерно-фiзичнi методи були використанi для визначення коефiцiєнтiв дифузiї Cs, Na, Sr i Ga в зразках на основi керамiки Ceramicrete, якi мiстили iмiтатори рiдких радiоактивних вiдходiв "Хенфорд-1", KW i KE Basin sludge, 10 % волластонiтy i 0.3% борної кислоти. Пiсля опромiнення дослiджуваних зразкiв електронами i гальмiвним випромiнюванням до дози 100 i 1 МГр, вiдповiдно, було проведено вилуговування при температурi 37°C. Значення коефiцiєнтiв дифузiї цезiю, стронцiю, натрiю змiнювалися в процесi вилуговування вiд одиниць 10⁻¹⁰ см²/с до 10⁻¹⁶ ... 10⁻¹⁷ см²/с, для галiю вiд одиниць 10⁻¹³ см²/с до 10⁻¹⁶ см²/с. Виявлено зменшення ваги керамiки в процесi вилуговування протягом 858 годин, опромiнених електронами до дози 100 МГp, на 14,6 i 18,5% з iмiтаторами KE i KW, вiдповiдно. Виявлено зменшення ваги керамiки в процесi вилуговування протягом 858 години, опромiненої гама-квантами до дози 1 МГp, на 19,9 i 21,6% з iмiтаторами KW i KE, вiдповiдно. Виявлено, що суми вiдносин коефiцiєнта дифузiї натрiю до цезiю та стронцiю знаходяться в антагонiстичної залежностi вiд вмiсту цезiю та стронцiю в матрицi на основi Ceramicrete.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/80505
citation_txt Cesium, strontium and sodium diffusion in magnesium kalium phosphates system / N.P. Dikiy, A.N. Dovbnya, Yu.V. Lyashko, D.V. Medvedev, E.P. Medvedeva, O.A. Repikhov, S.Y. Saenko, V.A. Shkuropatenko, R.V. Tarasov, I.D. Fedorets, N.P. Khlapova // Вопросы атомной науки и техники. — 2014. — № 5. — С. 39-44. — Бібліогр.: 10 назв. — англ.
work_keys_str_mv AT dikiynp cesiumstrontiumandsodiumdiffusioninmagnesiumkaliumphosphatessystem
AT dovbnyaan cesiumstrontiumandsodiumdiffusioninmagnesiumkaliumphosphatessystem
AT lyashkoyuv cesiumstrontiumandsodiumdiffusioninmagnesiumkaliumphosphatessystem
AT medvedevdv cesiumstrontiumandsodiumdiffusioninmagnesiumkaliumphosphatessystem
AT medvedevaep cesiumstrontiumandsodiumdiffusioninmagnesiumkaliumphosphatessystem
AT repikhovoa cesiumstrontiumandsodiumdiffusioninmagnesiumkaliumphosphatessystem
AT saenkosy cesiumstrontiumandsodiumdiffusioninmagnesiumkaliumphosphatessystem
AT shkuropatenkova cesiumstrontiumandsodiumdiffusioninmagnesiumkaliumphosphatessystem
AT tarasovrv cesiumstrontiumandsodiumdiffusioninmagnesiumkaliumphosphatessystem
AT fedoretsid cesiumstrontiumandsodiumdiffusioninmagnesiumkaliumphosphatessystem
AT khlapovanp cesiumstrontiumandsodiumdiffusioninmagnesiumkaliumphosphatessystem
AT dikiynp diffuziâceziâstronciâinatriâvmagniikaliifosfatnoisisteme
AT dovbnyaan diffuziâceziâstronciâinatriâvmagniikaliifosfatnoisisteme
AT lyashkoyuv diffuziâceziâstronciâinatriâvmagniikaliifosfatnoisisteme
AT medvedevdv diffuziâceziâstronciâinatriâvmagniikaliifosfatnoisisteme
AT medvedevaep diffuziâceziâstronciâinatriâvmagniikaliifosfatnoisisteme
AT repikhovoa diffuziâceziâstronciâinatriâvmagniikaliifosfatnoisisteme
AT saenkosy diffuziâceziâstronciâinatriâvmagniikaliifosfatnoisisteme
AT shkuropatenkova diffuziâceziâstronciâinatriâvmagniikaliifosfatnoisisteme
AT tarasovrv diffuziâceziâstronciâinatriâvmagniikaliifosfatnoisisteme
AT fedoretsid diffuziâceziâstronciâinatriâvmagniikaliifosfatnoisisteme
AT khlapovanp diffuziâceziâstronciâinatriâvmagniikaliifosfatnoisisteme
AT dikiynp difuziâceziûstronciûinatriûvmagniikaliifosfatniisistemi
AT dovbnyaan difuziâceziûstronciûinatriûvmagniikaliifosfatniisistemi
AT lyashkoyuv difuziâceziûstronciûinatriûvmagniikaliifosfatniisistemi
AT medvedevdv difuziâceziûstronciûinatriûvmagniikaliifosfatniisistemi
AT medvedevaep difuziâceziûstronciûinatriûvmagniikaliifosfatniisistemi
AT repikhovoa difuziâceziûstronciûinatriûvmagniikaliifosfatniisistemi
AT saenkosy difuziâceziûstronciûinatriûvmagniikaliifosfatniisistemi
AT shkuropatenkova difuziâceziûstronciûinatriûvmagniikaliifosfatniisistemi
AT tarasovrv difuziâceziûstronciûinatriûvmagniikaliifosfatniisistemi
AT fedoretsid difuziâceziûstronciûinatriûvmagniikaliifosfatniisistemi
AT khlapovanp difuziâceziûstronciûinatriûvmagniikaliifosfatniisistemi
first_indexed 2025-11-27T05:33:28Z
last_indexed 2025-11-27T05:33:28Z
_version_ 1850802202302480384
fulltext NUCLEAR-PHYSICAL METHODS AND PROCESSING OF DATA CESIUM, STRONTIUM AND SODIUM DIFFUSION IN MAGNESIUM KALIUM PHOSPHATES SYSTEM N.P. Dikiy1∗, A.N. Dovbnya1, Yu.V. Lyashko1, D.V. Medvedev1, E.P. Medvedeva1, O.A. Repikhov1, S.Y. Saenko1, V.A. Shkuropatenko1, R.V. Tarasov1, I.D. Fedorets2, N.P. Khlapova2 1National Science Center ”Kharkov Institute of Physics and Technology”, 61108, Kharkov, Ukraine 2V.N. Karazin Kharkov National University, 61077, Kharkov, Ukraine (Received May 13, 2014) Nuclear-physical methods have been used for determination of diffusion coefficient of Cs, Na, Sr and Ga in samples on the basis of Ceramicrete which contained simulators of a liquid radioactive waste of ”Hanford-1”, KW and KE Basin sludge, 10% wollastonite and 0.3% of boric acid. After an irradiation of investigated samples by electrons and brake radiation to a dose 100 and 1 MGy, accordingly, leaching was conducted at temperature 37◦C. Values of diffusion coefficient of Cs, Sr, Na changed in process of leaching from units of 10−10 cm2/s till 10−16 ... 10−17 cm2/s, for Ga - from units of 10−13 cm2/s to 10−16 cm2/s. Decreasing of weight of ceramics in process of leaching during 858 hours irradiated by electrons to a dose 100 MGy, on 14.6 and 18.5% with simulators KE and KW is revealed, accordingly. Decreasing of weight of ceramics in process of leaching during 858 hours, irradiated brake radiation to a dose 1 MGy, on 19.9 and 21.6% with simulators KW and KE, accordingly is revealed. The sums of relations of diffusion coefficient of Na concerning Cs and Sr are in antagonistic dependence on the Cs and Sr content in a matrix on the basis of Ceramicrete. PACS: 66.30.-h; 81.05.Rm 1. INTRODUCTION The storage of the spent fuel assumes use of multi- barrier protection that would allow to reliably isolate of radioactive waste in long-term storehouses. One of parts of this protection is materials which allow to prevent migration of radioactive isotopes into bio- sphere on the basis of phosphatic systems (KMgPO4) [1-3]. Phosphates are extremely insoluble in ground- water and this would ensure their good isolating prop- erties. The compound is formed under ambient con- ditions (room temperature) as a result of exothermic acid-base reaction between MgO and KH2PO4: MgO + KH2PO4 + 5H2O → MgKPO4·6H2O. Possibility of sorption of a radioactive waste and, especially 137Cs and 90Sr, are intensively investi- gated. Application of Ceramicrete is more economic in comparison with other matrices for storage of a radioactive waste. The important characteristic of Ceramicrete materials for storage of a radioactive waste is level of leaching by underground waters. It is known that Ceramicrete has low enough values of leaching speed at room temperature in neutral or al- kaline conditions. Use of accelerator base techniques allows to study extremely low values of leaching in conditions which are realized during long-term stor- age of the spent fuel. One of methods which allows to check reliability of the radioactive sample and estimate storage con- ditions of radionuclide’s is method of leaching. The liquid phase of leaching (filtrate) contains that part of the initial or radioactive sample which is liberated into a solution. Constant heating of sample in flask is realized. Speed leaching counted taking into ac- count of a geometrical surface of the sample. This properties characterises directly matrix material, i.e. durability of deduction of leaching components, and also serves for an estimation of long-term stability of a matrix material and a way of reception of an end- product. Physical and chemical parametres of reagents also can be changed easily. Usually processing of target was realised in the distilled water, i.e. in the neutral environment In the paper the leaching of sodium, strontium, caesium and gallium from matrices on the basis of Ceramicrete which were irradiated by electrons and the brake radiation to a dose 100 MGy and 1 MGy, accordingly, was studied. 2. MATERIALS AND METHODS Samples on the basis of Ceramicrete in aluminium containers with weight 10.32 g (with imitator ”Hanford-1” KE basin sludge and 10%CaSiO3+0,3%H3BO3), 12.588 g (with ∗Corresponding author E-mail address: ndikiy@kipt.kharkov.ua ISSN 1562-6016. PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2014, N5 (93). Series: Nuclear Physics Investigations (63), p.39-44. 39 imitator ”Hanford-1” KW basin sludge and 10%CaSiO3+0,3%H3BO3), 16.67 g (with imitator ”Hanford-1” KW basin sludge and 10%CaSiO3), 6.273 g (with imitator ”Hanford-1” KE basin sludge and 10%CaSiO3+ 0,3%H3BO3) were irradiated by electrons and brake radiation to dose 100MGy and 1MGy, accordingly. Parametres of irra- diation on the linear electron accelerator were: Emax=23MeV, I=700µA. After activation of sam- ples and standards measurement of activity of the radioisotopes obtained in reactions 23Na(γ,n)22Na, 133Cs(γ,n)132Cs, 96Sr(γ,n)95Sr, 68Ga(γ,n)67Ga, 48Ca(γ,n)47Ca, 44Ca(γ,p)43K, 23Na(n,γ)24Na car- ried out by Ge(Li)-detector with volume 50 cm3 and the energy resolution 3.2 keV in the area of 1332 keV (Figs.1, 2) [4-10]. In a spectrum of gamma radiation of the irradi- ated samples of ceramics before leaching lines of iso- topes with a half-life period of some days are regis- tered. The exception represents isotope of sodium-22 with a half-life period 2.6 years. 500 1000 1500 101 102 103 104 co un ts channel KW+10 CaSiO 3 +0,3H 3 BO 3 before leaching 67Ga 93 keV 511 keV 132Cs 667 keV 22Na 1275 keV 24Na 1369 keV 47Ca 1297 keV Fig.1. Energy spectrum of the sample of ceramics after an irradiation on the electronic accelerator before leaching 500 1000 1500 101 102 103 104 22Na 1275 keV 132Cs 667 keV KE+10 CaSiO 3 +0,3H 3 BO 3 co un ts channel after leaching 147Nd 91 keV 95Sr 514 keV 139Ce 166 keV 54Mn 835 keV Fig.2. Energy spectrum of the sample of ceramics after an irradiation on the electronic accelerator after leaching Gamma lines of isotopes with a half-life pe- riod more than 10 days are registered in a spec- trum of radiation of the irradiated samples of ce- ramics after leaching. The isotope of sodium-22 with a half-life period of 2.6 years is most strongly shown. After the process termination of leaching in samples of ceramics the gamma lines from iso- topes neodymium 148Nd(γ,n)147Nd, 91 keV), cobalt (58Ni(γ,p)57Co, 122 keV), chrome (52Cr(γ,n)51Cr, 320 keV), manganese (55Mn(γ,n)54Mn, 835 keV), cerium (140Ce(γ,n)139Ce, 165.8 keV), rubidium (85Rb(γ,n)84Rb, 881.5 keV), zinc (66Zn(γ,n)65Zn, 1115 keV) etc. are detected. After an irradiation the leaching of samples were realised in the distilled water (volume of 100 ml) at temperature 37◦C in the thermostat. The leaching was realised in 8 cycles during 3, 16, 29, 67, 76.33, 116, 195 and 335.66 hours. After certain time of leaching the solution was decanted. The solution was filtered for an exception of small fragments of Cerami- crete before measurement of radioactive waste in it. Fig.3 shows samples of Ceramicrete. Fig.3. The samples on basis Ceramicrete for conditioning of radioactive waste The pH determination of infiltrated waters is nec- essary regularly. This indicator, as a rule, remained invariable. Infiltrated waters with which the mobile phase of leaching was taken out, remained transpar- ent throughout all experiment. Table 1. The content of elements in samples KW- KW- KE- KE- Elements basin basin basin basin at.% wt.% at.% wt.% Na 12.06 12.64 11.7 12.09 Mg 12.06 13.36 10.31 11.27 P 12.06 17.03 9.62 13.4 K 4.7 8.37 3.85 6.77 Cl 2.68 4.33 3.85 6.13 S 1.34 1.96 3.64 5.25 O 52.76 38.45 52.94 38.07 Si 0.54 0.69 0.41 0.52 Al 1.23 1.51 2.4 2.91 Ca 0.054 0.099 0.096 0.17 Cr 0.0027 0.0064 0.0055 0.013 Mn 0.0013 0.0033 0.0055 0.014 Fe 0.4 1.018 0.99 2.48 Ga 0.06 0.19 0.082 0.26 Cs 0.0056 0.034 0.026 0.16 Nd 0.047 0.31 0.076 0.49 40 In the course of carrying out leaching the pH of solution of leaching on pH-meter-340 has been exe- cuted. pH of solution of leaching was 9.5. The chemical compound of studied samples of ma- trixes for storage of radioactive waste is resulted in Table 1. 3. RESULTS AND DISCUSSION The diffusion coefficients Na, Cs, Sr and Ga in samples of matrix for storage radioactive waste on basis of Ceramicrete were calculated from expression: q = 2√ π co √ Dt where D - diffusion coefficient, co - concentration of a studied element in substance (Figs. 4-10). 0 100 200 300 400 500 600 700 1E-17 1E-15 1E-13 1E-11 electron irradiation, 100 MGY T=37 C D , c m 2 /s hours 132Cs (e) KE+10% CaSiO3+0.3% H3BO3 22Na (e) KE+10% CaSiO3+0.3% H3BO3 85Sr (e) KE+10% CaSiO3+0.3% H3BO3 Fig.4. Diffusion coefficients of Cs, Na and Sr in samples on basis of Ceramicrete with imitator Hanford-1 KE basin sludge, 10% of wollastotine and 0.3% of boric acid irradiated by electrons, dose 100 MGy Reactions in which firm substances and pure wa- ter take part only, can be considered as reaction be- tween firm substance because activity of water is con- stant. To obtain the data about speed of carrying out of soluble ions from the radioactive sample, it was necessary to make weighing of the sample. The weight of samples of ceramics before and after leach- ing is resulted in Table 2. It is possible to see that substance ablation at leaching is more for the sam- ples, irradiated by gamma radiation. Stronger ra- diating influence on irradiated samples by electrons leads to structural transformations to a matrix on the basis of Ceramicrete and, accordingly, to decrease of values leaching and can be a possible explanation of such behavior of degree leaching. The matrices on basis of Ceramicrete loses to 20...25% of the weight when the temperature rises above 70◦C, which is caused by loss of crystal water from the sample and the change in the initial struc- ture of the material. In leaching process may also oc- cur degradation of the original crystalline structure and consequent formation of magnesium oxide, and the remaining components arrive in solution leaching. It is known that sodium and nitrates arrive in a so- lution appreciably at temperature of leaching 20◦C: sodium up to 40%, sulphates up to 15%, nitrates com- pletely – 100%. Also phosphates considerably leave matrixes on basis of Ceramicrete: about 9% [3]. 0 100 200 300 400 500 600 700 1E-17 1E-16 1E-15 1E-14 1E-13 1E-12 1E-11 1E-10 1E-9 D , c m 2 /s hours 132Cs (e) KW+10% CaSiO3+0.3% H3BO3 22Na (e) KW+10% CaSiO3+0.3% H3BO3 85Sr (e) KW+10% CaSiO3+0.3% H3BO3 67Ga (e) KW+10% CaSiO3+0.3% H3BO3 T=37 C electron irradiation, 100 MGY Fig.5. Diffusion coefficients of Cs, Na, Sr and Ga in samples on basis of Ceramicrete with imitator Hanford-1 KW basin sludge, 10% of wollastotine and 0.3% of boric acid irradiated by electrons, dose 100 MGy 0 100 200 300 400 500 600 700 1E-18 1E-16 1E-14 1E-12 1E-10 -irradiation, 1 MGY D , c m 2 /s T=37 C hours 132Cs (g) KW+10% CaSiO3 22Na (g) KW+10% CaSiO3 85Sr (g) KW+10% CaSiO3 Fig.6. Diffusion coefficients of Cs, Na and Sr in samples on basis of Ceramicrete with imitator Hanford-1 KW basin sludge and 10% of wollastotine irradiated by bremsstrahlung, dose 1 MGy Table 2. The weight of ceramics samples before and after leaching Leaching Weight before Weight after Ablation Irradiation samples leaching, g leaching, g KE+10%CaSiO3+0.3%H3BO3 10.32 8.815 14.6% e− 100 MGy KW+10%CaSiO3+0.3%H3BO3 12.59 10.26 18.5% e− 100 MGy KW+10%CaSiO3 16.67 13.35 19.9% γ 1 MGy KE+10%CaSiO3+0.3%H3BO3 6.273 4.915 21.6% γ 1 MGy 41 The diffusion coefficients of sodium in ceramics for all samples regardless of the conditions of expo- sure and leaching show high similarity. Therefore, given the sum of values of relations sodium diffusion regarding cesium and strontium largely characterize the behavior of the latter. It can be seen that the strontium content is more than the higher diffusion coefficient in the matrix of the cesium in samples on the basis of Ceramicrete (Tab.3). On the other hand, the greater the amount of cesium, the greater diffusion coefficient of strontium in ceramics on the basis of Ceramicrete. Note that a strong mutual op- posite effect occurs for strontium. In other words, strontium is less isomorphic admixture in matrix on the basis of Ceramicrete. Table 3. The sum of ratios of the diffusion coefficients of sodium relative to cesium and strontium and content of cesium and strontium in the ceramic samples KE+10%CaSiO3 KW+10%CaSiO3 KW+10%CaSiO3 KE+10%CaSiO3 +0.3%H3BO3 +0.3%H3BO3 +0.3%H3BO3 electrons, 100 MGy electrons, 100 MGy γ-radiation, 1 MGy γ-radiation, 1 MGy∑ DNa/DCs 15.87 28.3 34.6 14.7∑ DNa/DSr 15.76 5.98 2.56 32.7 content Cs, g/g 1.6·10−4 5.25·10−4 5.15·10−4 1.7·10−4 content Sr, g/g 9.97·10−3 4.63·10−3 4.37·10−3 1.09·10−2 0 100 200 300 400 500 600 700 1E-17 1E-15 1E-13 1E-11 1E-9 D, c m 2 /s hours 132Cs (g) KE+10% CaSiO3+0.3% H3BO3 22Na (g) KE+10% CaSiO3+0.3% H3BO3 85Sr (g) KE+10% CaSiO3+0.3% H3BO3 -irradiation, 1 MGY T=37 C Fig.7. Diffusion coefficients of Cs, Na and Sr in samples on basis of Ceramicrete with imitator Hanford-1 KE basin sludge, 10% of wollastotine and 0.3% of boric acid irradiated by bremsstrahlung, dose 1 MGy 0 100 200 300 400 500 600 700 1E-18 1E-16 1E-14 1E-12 1E-10 D , c m 2 /s hours 132Cs (e) KE+10% CaSiO3+0.3% H3BO3 132Cs (g) KE+10% CaSiO3+0.3% H3BO3 132Cs (e) KW+10% CaSiO3+0.3% H3BO3 132Cs (g) KW+10% CaSiO3 T=37 C Fig.8. Diffusion coefficients of Cs in samples on basis of Ceramicrete with imitator Hanford-1 KE and KW basins sludge 0 100 200 300 400 500 600 700 1E-17 1E-15 1E-13 1E-11 1E-9 D , c m 2 /s hours 85Sr (e) KE+10% CaSiO3+0.3% H3BO3 85Sr (g) KE+10% CaSiO3+0.3% H3BO3 85Sr (e) KW+10% CaSiO3+0.3% H3BO3 85Sr (g) KW+10% CaSiO3 T=37 C Fig.9. Diffusion coefficients of Sr in samples on basis of Ceramicrete with imitator Hanford-1 KE and KW basins sludge 0 100 200 300 400 500 600 700 1E-17 1E-16 1E-15 1E-14 1E-13 1E-12 1E-11 1E-10 D , c m 2 /s hours 22Na (e) KE+10% CaSiO3+0.3% H3BO3 22Na (g) KE+10% CaSiO3+0.3% H3BO3 22Na (e) KW+10% CaSiO3+0.3% H3BO3 22Na (g) KW+10% CaSiO3 T=37 C Fig.10. Diffusion coefficients of Na in samples on basis of Ceramicrete with imitator Hanford-1 KE and KW basins sludge 42 The diffusion coefficients of gallium in the ir- radiated electrons to a dose of 100 MGy of sam- ple KW +10%CaSiO3+0.3%H3BO3 has significantly lower values compared with cesium, strontium and sodium, which can be explained by the different va- lence concerning twice charged atoms of strontium and magnesium. The data on the diffusion of gallium can be use for some assumptions about the diffusion of aluminum, which is similar to gallium by means of close ionic radius. 4. CONCLUSIONS 1. Diffusion coefficients of cesium, strontium, sodium and gallium are measured during the leach- ing in distilled water at 37◦C from matrices on ba- sis of Ceramicrete in 8 cycles during 3, 16, 29, 67, 76.33, 116, 195 and 335.66 hours for the samples ir- radiated by electrons and gamma rays to a dose of 100 and 1 MGy, respectively. Diffusion coefficients of cesium, strontium and sodium changes from units 10−10 cm2/s to 10−16 ... 10−17 cm2/s in the process of leaching. Gallium diffusion coefficients changes from units 10−13 cm2/s to 10−16 cm2/s during leaching. 2. Decreasing of weight of ceramics irradiated by electrons to dose 100 MGy in process of leaching within 858 hours on 14.6 and 18.5% for samples with imitator Hanford-1 KE and KW basins sludge with 10%CaSiO3+0,3%H3BO3, accordingly, is discovered. Decreasing of weight of ceramics in process of leach- ing within 858 hours, irradiated by bremsstrahlung to dose 1 MGy, on 19.9 and 21.6% for KW and KE sam- ples with 0%CaSiO3 and 10%CaSiO3+0,3%H3BO3, accordingly, is discovered. 3. It is discovered that the sums of ratio of dif- fusion coefficients of sodium concerning caesium and strontium are in antagonistic dependence on the cae- sium and strontium content in a matrices on the basis of Ceramicrete. The more of the content of strontium correspond to the more of diffusion coefficient of cae- sium in a matrix on the basis of Ceramicrete. The more of the caesium content correspond to the more diffusion coefficient of strontium in ceramics. References 1. N.Deneanu, M.Dulama, I. Teoreanu. Magnesium Phosphates Binding Systems for Immobilizing Solvent Radioactive Wastes // Rev. Chim. (Bu- cureoti) 2008, v.59, N.4, p. 430-433. 2. A.S.Wagh. Chemically bonded phosphate ceram- ics. Amsterdam: ”Elsevier”, 2004, 283 p. 3. S.E.Vinokurov, Yu.M.Kulyako, O.M. Slyuntchev, et al. Low-temperature im- mobilization of actinides and other components of high-level waste in magnesium potassium phosphate matrices // J. Nucl. Mat. 2009, v. 385, p. 189–192. 4. N.P.Dikiy, A.N.Dovbnya, Yu.V. Lyashko, et al. Use of nuclear-physical methods to study the leaching of metals from granite // Bull. KNU. Ser. ”Phys., nucl., field”. 2001, N.541, iss. 4(16), p. 85–88 (In Russian). 5. N.P.Dikiy, A.N.Dovbnya, S.Yu. Sayenko, et al. Electron linac application for characterization of radiactive waste // PAST. Ser. ”Nucl.-phys. res.”(39). 2001, N.3, p. 178–180. 6. N.P.Dikiy, A.N.Dovbnya, Yu.V. Lyashko, et al. Using Linac to study the diffusion of fission products and actinides in glass-ceramic matri- ces // PAST. Ser. ”Nucl.-phys. res.”(39). 2004, N.1(42), p. 172–174. 7. N.P.Dikiy, S.V.Gabelkov, A.N.Dovbnya, et al. Application of gamma activation analysis for re- search of Cs and I diffusion into glassceramic ma- trix // PAST. Ser. ”Nucl.-phys. res.”(39). 2006, N.3(47), p. 171–173. 8. V.I. Dubinko, A.N.Dovbnya, S.Yu. Saenko, et al. Investigation of actinide simulators migra- tion in granite and tuff irradiated by gamma- quanta // PAST. Ser. ”Nucl.-phys. res.”(39). 2006, N.3(47), p. 176–178. 9. N.P. V.A.Dikiy, A.N. V.A.Dovbnya, Yu.V. V.A.Lyashko, et al. Diffusion of sodium, potas- sium, calcium, manganese, radon in tuff and clinoptilolite in leaching // JTP 2011, v. 81, iss. 7, p. 120–123. (in Russian). 10. V.N.Bondarenko, A.V.Goncharov, V.V.Kuz‘menko, et al. Application of a proton microprobe to study diffusion profiles of Ce in synthetic aluminosilicates // PAST. Ser. ”Nucl.-phys. res.” 2005, N.6(45), p. 114-116. 43 ÄÈÔÔÓÇÈß ÖÅÇÈß, ÑÒÐÎÍÖÈß È ÍÀÒÐÈß Â ÌÀÃÍÈÉ ÊÀËÈÉ ÔÎÑÔÀÒÍÎÉ ÑÈÑÒÅÌÅ Í.Ï. Äèêèé, A.Í. Äîâáíÿ, Þ.Â. Ëÿøêî, Å.Ï. Ìåäâåäåâà, Ä.Â. Ìåäâåäåâ, Î.À. Ðåïèõîâ, Ñ.Þ. Ñàåíêî, Â.À. Øêóðîïàòåíêî, P.Â. Òàðàñîâ, È.Ä. Ôåäîðåö, Í.Ï. Õëàïîâà ßäåðíî-ôèçè÷åñêèå ìåòîäû áûëè èñïîëüçîâàíû äëÿ îïðåäåëåíèÿ êîýôôèöèåíòîâ äèôôóçèè Cs, Na, Sr è Ga â îáðàçöàõ íà îñíîâå êåðàìèêè Ceramicrete, êîòîðûå ñîäåðæàëè èìèòàòîðû æèäêèõ ðàäèîàê- òèâíûõ îòõîäîâ ”Õåíôîðä-1”, KW è KE Basin sludge, 10% âîëëàñòîíèòà è 0.3% áîðíîé êèñëîòû. Ïîñëå îáëó÷åíèÿ èññëåäóåìûõ îáðàçöîâ ýëåêòðîíàìè è òîðìîçíûì èçëó÷åíèåì äî äîçû 100 è 1 ÌÃð, ñîîòâåò- ñòâåííî, áûëî ïðîâåäåíî âûùåëà÷èâàíèå ïðè òåìïåðàòóðå 37◦C. Çíà÷åíèÿ êîýôôèöèåíòîâ äèôôóçèè öåçèÿ, ñòðîíöèÿ, íàòðèÿ èçìåíÿëèñü â ïðîöåññå âûùåëà÷èâàíèÿ îò åäèíèö 10−100 ñì2/ñ äî 10−16 ... 10−17 ñì2/ñ, äëÿ ãàëëèÿ � îò åäèíèö 10−13 ñì2/ñ äî 10−16 ñì2/ñ. Îáíàðóæåíî óìåíüøåíèå âåñà êåðàìè- êè â ïðîöåññå âûùåëà÷èâàíèÿ â òå÷åíèå 858 ÷àñîâ, îáëó÷åííûõ ýëåêòðîíàìè äî äîçû 100 ÌÃp, íà 14,6 è 18,5% ñ èìèòàòîðàìè KE è KW, ñîîòâåòñòâåííî. Îáíàðóæåíî óìåíüøåíèå âåñà êåðàìèêè â ïðîöåññå âûùåëà÷èâàíèÿ â òå÷åíèå 858 ÷àñà, îáëó÷åííîé ãàììà-êâàíòàìè äî äîçû 1 ÌÃp, íà 19,9 è 21,6% ñ èìèòàòîðàìè KW è KE, ñîîòâåòñòâåííî. Îáíàðóæåíî, ÷òî ñóììû îòíîøåíèé êîýôôèöèåíòà äèôôó- çèè íàòðèÿ îòíîñèòåëüíî öåçèÿ è ñòðîíöèÿ íàõîäÿòñÿ â àíòàãîíèñòè÷åñêîé çàâèñèìîñòè îò ñîäåðæàíèÿ öåçèÿ è ñòðîíöèÿ â ìàòðèöå íà îñíîâå Ceramicrete. ÄÈÔÓÇIß ÖÅÇIÞ, ÑÒÐÎÍÖIÞ I ÍÀÒÐIÞ Â ÌÀÃÍIÉ ÊÀËIÉ ÔÎÑÔÀÒÍIÉ ÑÈÑÒÅÌI Ì.Ï. Äèêèé, A.Ì. Äîâáíÿ, Þ.Â. Ëÿøêî, Î.Ï. Ìåäâåä¹âà, Ä.Â. Ìåäâåä¹â, Î.Î. Ðåïiõîâ, Ñ.Þ. Ñà¹íêî, Â.À. Øêóðîïàòåíêî, P.Â. Òàðàñîâ, I.Ä. Ôåäîðåöü, Í.Ï. Õëàïîâà ßäåðíî-ôiçè÷íi ìåòîäè áóëè âèêîðèñòàíi äëÿ âèçíà÷åííÿ êîåôiöi¹íòiâ äèôóçi¨ Cs, Na, Sr i Ga â çðàçêàõ íà îñíîâi êåðàìiêè Ceramicrete, ÿêi ìiñòèëè iìiòàòîðè ðiäêèõ ðàäiîàêòèâíèõ âiäõîäiâ ”Õåíôîðä-1”, KW i KE Basin sludge, 10 % âîëëàñòîíiòy i 0.3% áîðíî¨ êèñëîòè. Ïiñëÿ îïðîìiíåííÿ äîñëiäæóâàíèõ çðàçêiâ åëåêòðîíàìè i ãàëüìiâíèì âèïðîìiíþâàííÿì äî äîçè 100 i 1 ÌÃð, âiäïîâiäíî, áóëî ïðîâåäåíî âèëóãî- âóâàííÿ ïðè òåìïåðàòóði 37◦C. Çíà÷åííÿ êîåôiöi¹íòiâ äèôóçi¨ öåçiþ, ñòðîíöiþ, íàòðiþ çìiíþâàëèñÿ â ïðîöåñi âèëóãîâóâàííÿ âiä îäèíèöü 10−10 ñì2/ñ äî 10−16 ... 10−17 ñì2/ñ, äëÿ ãàëiþ � âiä îäèíèöü 10−13 ñì2/ñ äî 10−16 ñì2/ñ. Âèÿâëåíî çìåíøåííÿ âàãè êåðàìiêè â ïðîöåñi âèëóãîâóâàííÿ ïðîòÿãîì 858 ãîäèí, îïðîìiíåíèõ åëåêòðîíàìè äî äîçè 100 ÌÃp, íà 14,6 i 18,5% ç iìiòàòîðàìè KE i KW, âiäïî- âiäíî. Âèÿâëåíî çìåíøåííÿ âàãè êåðàìiêè â ïðîöåñi âèëóãîâóâàííÿ ïðîòÿãîì 858 ãîäèíè, îïðîìiíåíî¨ ãàìà-êâàíòàìè äî äîçè 1 ÌÃp, íà 19,9 i 21,6% ç iìiòàòîðàìè KW i KE, âiäïîâiäíî. Âèÿâëåíî, ùî ñóìè âiäíîñèí êîåôiöi¹íòà äèôóçi¨ íàòðiþ äî öåçiþ òà ñòðîíöiþ çíàõîäÿòüñÿ â àíòàãîíiñòè÷íî¨ çàëåæíîñòi âiä âìiñòó öåçiþ òà ñòðîíöiþ â ìàòðèöi íà îñíîâi Ceramicrete . 44