Cesium, strontium and sodium diffusion in magnesium kalium phosphates system
Nuclear-physical methods have been used for determination of diffusion coefficient of Cs, Na, Sr and Ga in samples on the basis of Ceramicrete which contained simulators of a liquid radioactive waste of "Hanford-1", KW and KE Basin sludge, 10% wollastonite and 0.3% of boric acid. After an...
Збережено в:
| Опубліковано в: : | Вопросы атомной науки и техники |
|---|---|
| Дата: | 2014 |
| Автори: | , , , , , , , , , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2014
|
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/80505 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Cesium, strontium and sodium diffusion in magnesium kalium phosphates system / N.P. Dikiy, A.N. Dovbnya, Yu.V. Lyashko, D.V. Medvedev, E.P. Medvedeva, O.A. Repikhov, S.Y. Saenko, V.A. Shkuropatenko, R.V. Tarasov, I.D. Fedorets, N.P. Khlapova // Вопросы атомной науки и техники. — 2014. — № 5. — С. 39-44. — Бібліогр.: 10 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-80505 |
|---|---|
| record_format |
dspace |
| spelling |
Dikiy, N.P. Dovbnya, A.N. Lyashko, Yu.V. Medvedev, D.V. Medvedeva, E.P. Repikhov, O.A. Saenko, S.Y. Shkuropatenko, V.A. Tarasov, R.V. Fedorets, I.D. Khlapova, N.P. 2015-04-18T15:56:55Z 2015-04-18T15:56:55Z 2014 Cesium, strontium and sodium diffusion in magnesium kalium phosphates system / N.P. Dikiy, A.N. Dovbnya, Yu.V. Lyashko, D.V. Medvedev, E.P. Medvedeva, O.A. Repikhov, S.Y. Saenko, V.A. Shkuropatenko, R.V. Tarasov, I.D. Fedorets, N.P. Khlapova // Вопросы атомной науки и техники. — 2014. — № 5. — С. 39-44. — Бібліогр.: 10 назв. — англ. 1562-6016 PACS: 66.30.-h; 81.05.Rm https://nasplib.isofts.kiev.ua/handle/123456789/80505 Nuclear-physical methods have been used for determination of diffusion coefficient of Cs, Na, Sr and Ga in samples on the basis of Ceramicrete which contained simulators of a liquid radioactive waste of "Hanford-1", KW and KE Basin sludge, 10% wollastonite and 0.3% of boric acid. After an irradiation of investigated samples by electrons and brake radiation to a dose 100 and 1 MGy, accordingly, leaching was conducted at temperature 37°C. Values of diffusion coefficient of Cs, Sr, Na changed in process of leaching from units of 10⁻¹⁰ cm²/s till 10⁻¹⁶ ... 10⁻¹⁷ cm²/s, for Ga - from units of 10⁻¹³ cm²/s to 10⁻¹⁶ cm²/s. Decreasing of weight of ceramics in process of leaching during 858 hours irradiated by electrons to a dose 100 MGy, on 14.6 and 18.5% with simulators KE and KW is revealed, accordingly. Decreasing of weight of ceramics in process of leaching during 858 hours, irradiated brake radiation to a dose 1 MGy, on 19.9 and 21.6% with simulators KW and KE, accordingly is revealed. The sums of relations of diffusion coefficient of Na concerning Cs and Sr are in antagonistic dependence on the Cs and Sr content in a matrix on the basis of Ceramicrete. Ядерно-физические методы были использованы для определения коэффициентов диффузии Cs, Na, Sr и Ga в образцах на основе керамики Ceramicrete, которые содержали имитаторы жидких радиоактивных отходов "Хенфорд-1", KW и KE Basin sludge, 10% волластонита и 0.3% борной кислоты. После облучения исследуемых образцов электронами и тормозным излучением до дозы 100 и 1 МГр, соответственно, было проведено выщелачивание при температуре 37°C. Значения коэффициентов диффузии цезия, стронция, натрия изменялись в процессе выщелачивания от единиц 10⁻¹⁰ см²/с до 10⁻¹⁶ ... 10⁻¹⁷ см²/с, для галлия от единиц 10⁻¹³ см²/с до 10⁻¹⁶ см²/с. Обнаружено уменьшение веса керамики в процессе выщелачивания в течение 858 часов, облученных электронами до дозы 100 МГp, на 14,6 и 18,5% с имитаторами KE и KW, соответственно. Обнаружено уменьшение веса керамики в процессе выщелачивания в течение 858 часа, облученной гамма-квантами до дозы 1 МГp, на 19,9 и 21,6% с имитаторами KW и KE, соответственно. Обнаружено, что суммы отношений коэффициента диффузии натрия относительно цезия и стронция находятся в антагонистической зависимости от содержания цезия и стронция в матрице на основе Ceramicrete. Ядерно-фiзичнi методи були використанi для визначення коефiцiєнтiв дифузiї Cs, Na, Sr i Ga в зразках на основi керамiки Ceramicrete, якi мiстили iмiтатори рiдких радiоактивних вiдходiв "Хенфорд-1", KW i KE Basin sludge, 10 % волластонiтy i 0.3% борної кислоти. Пiсля опромiнення дослiджуваних зразкiв електронами i гальмiвним випромiнюванням до дози 100 i 1 МГр, вiдповiдно, було проведено вилуговування при температурi 37°C. Значення коефiцiєнтiв дифузiї цезiю, стронцiю, натрiю змiнювалися в процесi вилуговування вiд одиниць 10⁻¹⁰ см²/с до 10⁻¹⁶ ... 10⁻¹⁷ см²/с, для галiю вiд одиниць 10⁻¹³ см²/с до 10⁻¹⁶ см²/с. Виявлено зменшення ваги керамiки в процесi вилуговування протягом 858 годин, опромiнених електронами до дози 100 МГp, на 14,6 i 18,5% з iмiтаторами KE i KW, вiдповiдно. Виявлено зменшення ваги керамiки в процесi вилуговування протягом 858 години, опромiненої гама-квантами до дози 1 МГp, на 19,9 i 21,6% з iмiтаторами KW i KE, вiдповiдно. Виявлено, що суми вiдносин коефiцiєнта дифузiї натрiю до цезiю та стронцiю знаходяться в антагонiстичної залежностi вiд вмiсту цезiю та стронцiю в матрицi на основi Ceramicrete. en Національний науковий центр «Харківський фізико-технічний інститут» НАН України Вопросы атомной науки и техники Ядерно-физические методы и обработка данных Cesium, strontium and sodium diffusion in magnesium kalium phosphates system Диффузия цезия, стронция и натрия в магний калий фосфатной системе Дифузiя цезiю, стронцiю i натрiю в магнiй калiй фосфатнiй системi Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Cesium, strontium and sodium diffusion in magnesium kalium phosphates system |
| spellingShingle |
Cesium, strontium and sodium diffusion in magnesium kalium phosphates system Dikiy, N.P. Dovbnya, A.N. Lyashko, Yu.V. Medvedev, D.V. Medvedeva, E.P. Repikhov, O.A. Saenko, S.Y. Shkuropatenko, V.A. Tarasov, R.V. Fedorets, I.D. Khlapova, N.P. Ядерно-физические методы и обработка данных |
| title_short |
Cesium, strontium and sodium diffusion in magnesium kalium phosphates system |
| title_full |
Cesium, strontium and sodium diffusion in magnesium kalium phosphates system |
| title_fullStr |
Cesium, strontium and sodium diffusion in magnesium kalium phosphates system |
| title_full_unstemmed |
Cesium, strontium and sodium diffusion in magnesium kalium phosphates system |
| title_sort |
cesium, strontium and sodium diffusion in magnesium kalium phosphates system |
| author |
Dikiy, N.P. Dovbnya, A.N. Lyashko, Yu.V. Medvedev, D.V. Medvedeva, E.P. Repikhov, O.A. Saenko, S.Y. Shkuropatenko, V.A. Tarasov, R.V. Fedorets, I.D. Khlapova, N.P. |
| author_facet |
Dikiy, N.P. Dovbnya, A.N. Lyashko, Yu.V. Medvedev, D.V. Medvedeva, E.P. Repikhov, O.A. Saenko, S.Y. Shkuropatenko, V.A. Tarasov, R.V. Fedorets, I.D. Khlapova, N.P. |
| topic |
Ядерно-физические методы и обработка данных |
| topic_facet |
Ядерно-физические методы и обработка данных |
| publishDate |
2014 |
| language |
English |
| container_title |
Вопросы атомной науки и техники |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| format |
Article |
| title_alt |
Диффузия цезия, стронция и натрия в магний калий фосфатной системе Дифузiя цезiю, стронцiю i натрiю в магнiй калiй фосфатнiй системi |
| description |
Nuclear-physical methods have been used for determination of diffusion coefficient of Cs, Na, Sr and Ga in samples on the basis of Ceramicrete which contained simulators of a liquid radioactive waste of "Hanford-1", KW and KE Basin sludge, 10% wollastonite and 0.3% of boric acid. After an irradiation of investigated samples by electrons and brake radiation to a dose 100 and 1 MGy, accordingly, leaching was conducted at temperature 37°C. Values of diffusion coefficient of Cs, Sr, Na changed in process of leaching from units of 10⁻¹⁰ cm²/s till 10⁻¹⁶ ... 10⁻¹⁷ cm²/s, for Ga - from units of 10⁻¹³ cm²/s to 10⁻¹⁶ cm²/s. Decreasing of weight of ceramics in process of leaching during 858 hours irradiated by electrons to a dose 100 MGy, on 14.6 and 18.5% with simulators KE and KW is revealed, accordingly. Decreasing of weight of ceramics in process of leaching during 858 hours, irradiated brake radiation to a dose 1 MGy, on 19.9 and 21.6% with simulators KW and KE, accordingly is revealed. The sums of relations of diffusion coefficient of Na concerning Cs and Sr are in antagonistic dependence on the Cs and Sr content in a matrix on the basis of Ceramicrete.
Ядерно-физические методы были использованы для определения коэффициентов диффузии Cs, Na, Sr и Ga в образцах на основе керамики Ceramicrete, которые содержали имитаторы жидких радиоактивных отходов "Хенфорд-1", KW и KE Basin sludge, 10% волластонита и 0.3% борной кислоты. После облучения исследуемых образцов электронами и тормозным излучением до дозы 100 и 1 МГр, соответственно, было проведено выщелачивание при температуре 37°C. Значения коэффициентов диффузии цезия, стронция, натрия изменялись в процессе выщелачивания от единиц 10⁻¹⁰ см²/с до 10⁻¹⁶ ... 10⁻¹⁷ см²/с, для галлия от единиц 10⁻¹³ см²/с до 10⁻¹⁶ см²/с. Обнаружено уменьшение веса керамики в процессе выщелачивания в течение 858 часов, облученных электронами до дозы 100 МГp, на 14,6 и 18,5% с имитаторами KE и KW, соответственно. Обнаружено уменьшение веса керамики в процессе выщелачивания в течение 858 часа, облученной гамма-квантами до дозы 1 МГp, на 19,9 и 21,6% с имитаторами KW и KE, соответственно. Обнаружено, что суммы отношений коэффициента диффузии натрия относительно цезия и стронция находятся в антагонистической зависимости от содержания цезия и стронция в матрице на основе Ceramicrete.
Ядерно-фiзичнi методи були використанi для визначення коефiцiєнтiв дифузiї Cs, Na, Sr i Ga в зразках на основi керамiки Ceramicrete, якi мiстили iмiтатори рiдких радiоактивних вiдходiв "Хенфорд-1", KW i KE Basin sludge, 10 % волластонiтy i 0.3% борної кислоти. Пiсля опромiнення дослiджуваних зразкiв електронами i гальмiвним випромiнюванням до дози 100 i 1 МГр, вiдповiдно, було проведено вилуговування при температурi 37°C. Значення коефiцiєнтiв дифузiї цезiю, стронцiю, натрiю змiнювалися в процесi вилуговування вiд одиниць 10⁻¹⁰ см²/с до 10⁻¹⁶ ... 10⁻¹⁷ см²/с, для галiю вiд одиниць 10⁻¹³ см²/с до 10⁻¹⁶ см²/с. Виявлено зменшення ваги керамiки в процесi вилуговування протягом 858 годин, опромiнених електронами до дози 100 МГp, на 14,6 i 18,5% з iмiтаторами KE i KW, вiдповiдно. Виявлено зменшення ваги керамiки в процесi вилуговування протягом 858 години, опромiненої гама-квантами до дози 1 МГp, на 19,9 i 21,6% з iмiтаторами KW i KE, вiдповiдно. Виявлено, що суми вiдносин коефiцiєнта дифузiї натрiю до цезiю та стронцiю знаходяться в антагонiстичної залежностi вiд вмiсту цезiю та стронцiю в матрицi на основi Ceramicrete.
|
| issn |
1562-6016 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/80505 |
| citation_txt |
Cesium, strontium and sodium diffusion in magnesium kalium phosphates system / N.P. Dikiy, A.N. Dovbnya, Yu.V. Lyashko, D.V. Medvedev, E.P. Medvedeva, O.A. Repikhov, S.Y. Saenko, V.A. Shkuropatenko, R.V. Tarasov, I.D. Fedorets, N.P. Khlapova // Вопросы атомной науки и техники. — 2014. — № 5. — С. 39-44. — Бібліогр.: 10 назв. — англ. |
| work_keys_str_mv |
AT dikiynp cesiumstrontiumandsodiumdiffusioninmagnesiumkaliumphosphatessystem AT dovbnyaan cesiumstrontiumandsodiumdiffusioninmagnesiumkaliumphosphatessystem AT lyashkoyuv cesiumstrontiumandsodiumdiffusioninmagnesiumkaliumphosphatessystem AT medvedevdv cesiumstrontiumandsodiumdiffusioninmagnesiumkaliumphosphatessystem AT medvedevaep cesiumstrontiumandsodiumdiffusioninmagnesiumkaliumphosphatessystem AT repikhovoa cesiumstrontiumandsodiumdiffusioninmagnesiumkaliumphosphatessystem AT saenkosy cesiumstrontiumandsodiumdiffusioninmagnesiumkaliumphosphatessystem AT shkuropatenkova cesiumstrontiumandsodiumdiffusioninmagnesiumkaliumphosphatessystem AT tarasovrv cesiumstrontiumandsodiumdiffusioninmagnesiumkaliumphosphatessystem AT fedoretsid cesiumstrontiumandsodiumdiffusioninmagnesiumkaliumphosphatessystem AT khlapovanp cesiumstrontiumandsodiumdiffusioninmagnesiumkaliumphosphatessystem AT dikiynp diffuziâceziâstronciâinatriâvmagniikaliifosfatnoisisteme AT dovbnyaan diffuziâceziâstronciâinatriâvmagniikaliifosfatnoisisteme AT lyashkoyuv diffuziâceziâstronciâinatriâvmagniikaliifosfatnoisisteme AT medvedevdv diffuziâceziâstronciâinatriâvmagniikaliifosfatnoisisteme AT medvedevaep diffuziâceziâstronciâinatriâvmagniikaliifosfatnoisisteme AT repikhovoa diffuziâceziâstronciâinatriâvmagniikaliifosfatnoisisteme AT saenkosy diffuziâceziâstronciâinatriâvmagniikaliifosfatnoisisteme AT shkuropatenkova diffuziâceziâstronciâinatriâvmagniikaliifosfatnoisisteme AT tarasovrv diffuziâceziâstronciâinatriâvmagniikaliifosfatnoisisteme AT fedoretsid diffuziâceziâstronciâinatriâvmagniikaliifosfatnoisisteme AT khlapovanp diffuziâceziâstronciâinatriâvmagniikaliifosfatnoisisteme AT dikiynp difuziâceziûstronciûinatriûvmagniikaliifosfatniisistemi AT dovbnyaan difuziâceziûstronciûinatriûvmagniikaliifosfatniisistemi AT lyashkoyuv difuziâceziûstronciûinatriûvmagniikaliifosfatniisistemi AT medvedevdv difuziâceziûstronciûinatriûvmagniikaliifosfatniisistemi AT medvedevaep difuziâceziûstronciûinatriûvmagniikaliifosfatniisistemi AT repikhovoa difuziâceziûstronciûinatriûvmagniikaliifosfatniisistemi AT saenkosy difuziâceziûstronciûinatriûvmagniikaliifosfatniisistemi AT shkuropatenkova difuziâceziûstronciûinatriûvmagniikaliifosfatniisistemi AT tarasovrv difuziâceziûstronciûinatriûvmagniikaliifosfatniisistemi AT fedoretsid difuziâceziûstronciûinatriûvmagniikaliifosfatniisistemi AT khlapovanp difuziâceziûstronciûinatriûvmagniikaliifosfatniisistemi |
| first_indexed |
2025-11-27T05:33:28Z |
| last_indexed |
2025-11-27T05:33:28Z |
| _version_ |
1850802202302480384 |
| fulltext |
NUCLEAR-PHYSICAL METHODS AND PROCESSING OF DATA
CESIUM, STRONTIUM AND SODIUM DIFFUSION IN
MAGNESIUM KALIUM PHOSPHATES SYSTEM
N.P. Dikiy1∗, A.N. Dovbnya1, Yu.V. Lyashko1, D.V. Medvedev1,
E.P. Medvedeva1, O.A. Repikhov1, S.Y. Saenko1, V.A. Shkuropatenko1,
R.V. Tarasov1, I.D. Fedorets2, N.P. Khlapova2
1National Science Center ”Kharkov Institute of Physics and Technology”, 61108, Kharkov, Ukraine
2V.N. Karazin Kharkov National University, 61077, Kharkov, Ukraine
(Received May 13, 2014)
Nuclear-physical methods have been used for determination of diffusion coefficient of Cs, Na, Sr and Ga in samples
on the basis of Ceramicrete which contained simulators of a liquid radioactive waste of ”Hanford-1”, KW and KE
Basin sludge, 10% wollastonite and 0.3% of boric acid. After an irradiation of investigated samples by electrons
and brake radiation to a dose 100 and 1 MGy, accordingly, leaching was conducted at temperature 37◦C. Values of
diffusion coefficient of Cs, Sr, Na changed in process of leaching from units of 10−10 cm2/s till 10−16 ... 10−17 cm2/s,
for Ga - from units of 10−13 cm2/s to 10−16 cm2/s. Decreasing of weight of ceramics in process of leaching during
858 hours irradiated by electrons to a dose 100 MGy, on 14.6 and 18.5% with simulators KE and KW is revealed,
accordingly. Decreasing of weight of ceramics in process of leaching during 858 hours, irradiated brake radiation to
a dose 1 MGy, on 19.9 and 21.6% with simulators KW and KE, accordingly is revealed. The sums of relations of
diffusion coefficient of Na concerning Cs and Sr are in antagonistic dependence on the Cs and Sr content in a matrix
on the basis of Ceramicrete.
PACS: 66.30.-h; 81.05.Rm
1. INTRODUCTION
The storage of the spent fuel assumes use of multi-
barrier protection that would allow to reliably isolate
of radioactive waste in long-term storehouses. One
of parts of this protection is materials which allow
to prevent migration of radioactive isotopes into bio-
sphere on the basis of phosphatic systems (KMgPO4)
[1-3]. Phosphates are extremely insoluble in ground-
water and this would ensure their good isolating prop-
erties. The compound is formed under ambient con-
ditions (room temperature) as a result of exothermic
acid-base reaction between MgO and KH2PO4:
MgO + KH2PO4 + 5H2O → MgKPO4·6H2O.
Possibility of sorption of a radioactive waste and,
especially 137Cs and 90Sr, are intensively investi-
gated. Application of Ceramicrete is more economic
in comparison with other matrices for storage of a
radioactive waste. The important characteristic of
Ceramicrete materials for storage of a radioactive
waste is level of leaching by underground waters. It
is known that Ceramicrete has low enough values of
leaching speed at room temperature in neutral or al-
kaline conditions. Use of accelerator base techniques
allows to study extremely low values of leaching in
conditions which are realized during long-term stor-
age of the spent fuel.
One of methods which allows to check reliability
of the radioactive sample and estimate storage con-
ditions of radionuclide’s is method of leaching. The
liquid phase of leaching (filtrate) contains that part
of the initial or radioactive sample which is liberated
into a solution. Constant heating of sample in flask
is realized. Speed leaching counted taking into ac-
count of a geometrical surface of the sample. This
properties characterises directly matrix material, i.e.
durability of deduction of leaching components, and
also serves for an estimation of long-term stability of
a matrix material and a way of reception of an end-
product.
Physical and chemical parametres of reagents also
can be changed easily. Usually processing of target
was realised in the distilled water, i.e. in the neutral
environment
In the paper the leaching of sodium, strontium,
caesium and gallium from matrices on the basis of
Ceramicrete which were irradiated by electrons and
the brake radiation to a dose 100 MGy and 1 MGy,
accordingly, was studied.
2. MATERIALS AND METHODS
Samples on the basis of Ceramicrete in
aluminium containers with weight 10.32 g
(with imitator ”Hanford-1” KE basin sludge
and 10%CaSiO3+0,3%H3BO3), 12.588 g (with
∗Corresponding author E-mail address: ndikiy@kipt.kharkov.ua
ISSN 1562-6016. PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2014, N5 (93).
Series: Nuclear Physics Investigations (63), p.39-44.
39
imitator ”Hanford-1” KW basin sludge and
10%CaSiO3+0,3%H3BO3), 16.67 g (with imitator
”Hanford-1” KW basin sludge and 10%CaSiO3),
6.273 g (with imitator ”Hanford-1” KE basin sludge
and 10%CaSiO3+ 0,3%H3BO3) were irradiated by
electrons and brake radiation to dose 100MGy
and 1MGy, accordingly. Parametres of irra-
diation on the linear electron accelerator were:
Emax=23MeV, I=700µA. After activation of sam-
ples and standards measurement of activity of the
radioisotopes obtained in reactions 23Na(γ,n)22Na,
133Cs(γ,n)132Cs, 96Sr(γ,n)95Sr, 68Ga(γ,n)67Ga,
48Ca(γ,n)47Ca, 44Ca(γ,p)43K, 23Na(n,γ)24Na car-
ried out by Ge(Li)-detector with volume 50 cm3 and
the energy resolution 3.2 keV in the area of 1332 keV
(Figs.1, 2) [4-10].
In a spectrum of gamma radiation of the irradi-
ated samples of ceramics before leaching lines of iso-
topes with a half-life period of some days are regis-
tered. The exception represents isotope of sodium-22
with a half-life period 2.6 years.
500 1000 1500
101
102
103
104
co
un
ts
channel
KW+10 CaSiO
3
+0,3H
3
BO
3
before leaching
67Ga 93 keV
511 keV
132Cs 667 keV
22Na 1275 keV
24Na 1369 keV
47Ca 1297 keV
Fig.1. Energy spectrum of the sample of ceramics
after an irradiation on the electronic accelerator
before leaching
500 1000 1500
101
102
103
104
22Na 1275 keV
132Cs 667 keV
KE+10 CaSiO
3
+0,3H
3
BO
3
co
un
ts
channel
after leaching
147Nd 91 keV
95Sr 514 keV
139Ce
166 keV
54Mn 835 keV
Fig.2. Energy spectrum of the sample of ceramics
after an irradiation on the electronic accelerator
after leaching
Gamma lines of isotopes with a half-life pe-
riod more than 10 days are registered in a spec-
trum of radiation of the irradiated samples of ce-
ramics after leaching. The isotope of sodium-22
with a half-life period of 2.6 years is most strongly
shown. After the process termination of leaching
in samples of ceramics the gamma lines from iso-
topes neodymium 148Nd(γ,n)147Nd, 91 keV), cobalt
(58Ni(γ,p)57Co, 122 keV), chrome (52Cr(γ,n)51Cr,
320 keV), manganese (55Mn(γ,n)54Mn, 835 keV),
cerium (140Ce(γ,n)139Ce, 165.8 keV), rubidium
(85Rb(γ,n)84Rb, 881.5 keV), zinc (66Zn(γ,n)65Zn,
1115 keV) etc. are detected.
After an irradiation the leaching of samples were
realised in the distilled water (volume of 100 ml) at
temperature 37◦C in the thermostat. The leaching
was realised in 8 cycles during 3, 16, 29, 67, 76.33,
116, 195 and 335.66 hours. After certain time of
leaching the solution was decanted. The solution was
filtered for an exception of small fragments of Cerami-
crete before measurement of radioactive waste in it.
Fig.3 shows samples of Ceramicrete.
Fig.3. The samples on basis Ceramicrete for
conditioning of radioactive waste
The pH determination of infiltrated waters is nec-
essary regularly. This indicator, as a rule, remained
invariable. Infiltrated waters with which the mobile
phase of leaching was taken out, remained transpar-
ent throughout all experiment.
Table 1. The content of elements in samples
KW- KW- KE- KE-
Elements basin basin basin basin
at.% wt.% at.% wt.%
Na 12.06 12.64 11.7 12.09
Mg 12.06 13.36 10.31 11.27
P 12.06 17.03 9.62 13.4
K 4.7 8.37 3.85 6.77
Cl 2.68 4.33 3.85 6.13
S 1.34 1.96 3.64 5.25
O 52.76 38.45 52.94 38.07
Si 0.54 0.69 0.41 0.52
Al 1.23 1.51 2.4 2.91
Ca 0.054 0.099 0.096 0.17
Cr 0.0027 0.0064 0.0055 0.013
Mn 0.0013 0.0033 0.0055 0.014
Fe 0.4 1.018 0.99 2.48
Ga 0.06 0.19 0.082 0.26
Cs 0.0056 0.034 0.026 0.16
Nd 0.047 0.31 0.076 0.49
40
In the course of carrying out leaching the pH of
solution of leaching on pH-meter-340 has been exe-
cuted. pH of solution of leaching was 9.5.
The chemical compound of studied samples of ma-
trixes for storage of radioactive waste is resulted in
Table 1.
3. RESULTS AND DISCUSSION
The diffusion coefficients Na, Cs, Sr and Ga in
samples of matrix for storage radioactive waste on
basis of Ceramicrete were calculated from expression:
q =
2√
π
co
√
Dt
where D - diffusion coefficient, co - concentration of
a studied element in substance (Figs. 4-10).
0 100 200 300 400 500 600 700
1E-17
1E-15
1E-13
1E-11
electron irradiation, 100 MGY
T=37 C
D
, c
m
2 /s
hours
132Cs (e) KE+10% CaSiO3+0.3% H3BO3
22Na (e) KE+10% CaSiO3+0.3% H3BO3
85Sr (e) KE+10% CaSiO3+0.3% H3BO3
Fig.4. Diffusion coefficients of Cs, Na and Sr
in samples on basis of Ceramicrete with imitator
Hanford-1 KE basin sludge, 10% of wollastotine
and 0.3% of boric acid irradiated by electrons, dose
100 MGy
Reactions in which firm substances and pure wa-
ter take part only, can be considered as reaction be-
tween firm substance because activity of water is con-
stant. To obtain the data about speed of carrying
out of soluble ions from the radioactive sample, it
was necessary to make weighing of the sample. The
weight of samples of ceramics before and after leach-
ing is resulted in Table 2. It is possible to see that
substance ablation at leaching is more for the sam-
ples, irradiated by gamma radiation. Stronger ra-
diating influence on irradiated samples by electrons
leads to structural transformations to a matrix on the
basis of Ceramicrete and, accordingly, to decrease of
values leaching and can be a possible explanation of
such behavior of degree leaching.
The matrices on basis of Ceramicrete loses to
20...25% of the weight when the temperature rises
above 70◦C, which is caused by loss of crystal water
from the sample and the change in the initial struc-
ture of the material. In leaching process may also oc-
cur degradation of the original crystalline structure
and consequent formation of magnesium oxide, and
the remaining components arrive in solution leaching.
It is known that sodium and nitrates arrive in a so-
lution appreciably at temperature of leaching 20◦C:
sodium up to 40%, sulphates up to 15%, nitrates com-
pletely – 100%. Also phosphates considerably leave
matrixes on basis of Ceramicrete: about 9% [3].
0 100 200 300 400 500 600 700
1E-17
1E-16
1E-15
1E-14
1E-13
1E-12
1E-11
1E-10
1E-9
D
, c
m
2 /s
hours
132Cs (e) KW+10% CaSiO3+0.3% H3BO3
22Na (e) KW+10% CaSiO3+0.3% H3BO3
85Sr (e) KW+10% CaSiO3+0.3% H3BO3
67Ga (e) KW+10% CaSiO3+0.3% H3BO3
T=37 C
electron irradiation, 100 MGY
Fig.5. Diffusion coefficients of Cs, Na, Sr and Ga
in samples on basis of Ceramicrete with imitator
Hanford-1 KW basin sludge, 10% of wollastotine
and 0.3% of boric acid irradiated by electrons, dose
100 MGy
0 100 200 300 400 500 600 700
1E-18
1E-16
1E-14
1E-12
1E-10
-irradiation, 1 MGY
D
, c
m
2 /s
T=37 C
hours
132Cs (g) KW+10% CaSiO3
22Na (g) KW+10% CaSiO3
85Sr (g) KW+10% CaSiO3
Fig.6. Diffusion coefficients of Cs, Na and Sr in
samples on basis of Ceramicrete with imitator
Hanford-1 KW basin sludge and 10% of wollastotine
irradiated by bremsstrahlung, dose 1 MGy
Table 2. The weight of ceramics samples before and after leaching
Leaching Weight before Weight after Ablation Irradiation
samples leaching, g leaching, g
KE+10%CaSiO3+0.3%H3BO3 10.32 8.815 14.6% e− 100 MGy
KW+10%CaSiO3+0.3%H3BO3 12.59 10.26 18.5% e− 100 MGy
KW+10%CaSiO3 16.67 13.35 19.9% γ 1 MGy
KE+10%CaSiO3+0.3%H3BO3 6.273 4.915 21.6% γ 1 MGy
41
The diffusion coefficients of sodium in ceramics
for all samples regardless of the conditions of expo-
sure and leaching show high similarity. Therefore,
given the sum of values of relations sodium diffusion
regarding cesium and strontium largely characterize
the behavior of the latter. It can be seen that the
strontium content is more than the higher diffusion
coefficient in the matrix of the cesium in samples
on the basis of Ceramicrete (Tab.3). On the other
hand, the greater the amount of cesium, the greater
diffusion coefficient of strontium in ceramics on the
basis of Ceramicrete. Note that a strong mutual op-
posite effect occurs for strontium. In other words,
strontium is less isomorphic admixture in matrix on
the basis of Ceramicrete.
Table 3. The sum of ratios of the diffusion coefficients of sodium relative to cesium and strontium and
content of cesium and strontium in the ceramic samples
KE+10%CaSiO3 KW+10%CaSiO3 KW+10%CaSiO3 KE+10%CaSiO3
+0.3%H3BO3 +0.3%H3BO3 +0.3%H3BO3
electrons, 100 MGy electrons, 100 MGy γ-radiation, 1 MGy γ-radiation, 1 MGy∑
DNa/DCs 15.87 28.3 34.6 14.7∑
DNa/DSr 15.76 5.98 2.56 32.7
content Cs, g/g 1.6·10−4 5.25·10−4 5.15·10−4 1.7·10−4
content Sr, g/g 9.97·10−3 4.63·10−3 4.37·10−3 1.09·10−2
0 100 200 300 400 500 600 700
1E-17
1E-15
1E-13
1E-11
1E-9
D,
c
m
2 /s
hours
132Cs (g) KE+10% CaSiO3+0.3% H3BO3
22Na (g) KE+10% CaSiO3+0.3% H3BO3
85Sr (g) KE+10% CaSiO3+0.3% H3BO3
-irradiation, 1 MGY
T=37 C
Fig.7. Diffusion coefficients of Cs, Na and Sr in
samples on basis of Ceramicrete with imitator
Hanford-1 KE basin sludge, 10% of wollastotine and
0.3% of boric acid irradiated by bremsstrahlung,
dose 1 MGy
0 100 200 300 400 500 600 700
1E-18
1E-16
1E-14
1E-12
1E-10
D
, c
m
2 /s
hours
132Cs (e) KE+10% CaSiO3+0.3% H3BO3
132Cs (g) KE+10% CaSiO3+0.3% H3BO3
132Cs (e) KW+10% CaSiO3+0.3% H3BO3
132Cs (g) KW+10% CaSiO3
T=37 C
Fig.8. Diffusion coefficients of Cs in samples on
basis of Ceramicrete with imitator Hanford-1 KE
and KW basins sludge
0 100 200 300 400 500 600 700
1E-17
1E-15
1E-13
1E-11
1E-9
D
, c
m
2 /s
hours
85Sr (e) KE+10% CaSiO3+0.3% H3BO3
85Sr (g) KE+10% CaSiO3+0.3% H3BO3
85Sr (e) KW+10% CaSiO3+0.3% H3BO3
85Sr (g) KW+10% CaSiO3
T=37 C
Fig.9. Diffusion coefficients of Sr in samples on
basis of Ceramicrete with imitator Hanford-1 KE
and KW basins sludge
0 100 200 300 400 500 600 700
1E-17
1E-16
1E-15
1E-14
1E-13
1E-12
1E-11
1E-10
D
, c
m
2 /s
hours
22Na (e) KE+10% CaSiO3+0.3% H3BO3
22Na (g) KE+10% CaSiO3+0.3% H3BO3
22Na (e) KW+10% CaSiO3+0.3% H3BO3
22Na (g) KW+10% CaSiO3
T=37 C
Fig.10. Diffusion coefficients of Na in samples on
basis of Ceramicrete with imitator Hanford-1 KE
and KW basins sludge
42
The diffusion coefficients of gallium in the ir-
radiated electrons to a dose of 100 MGy of sam-
ple KW +10%CaSiO3+0.3%H3BO3 has significantly
lower values compared with cesium, strontium and
sodium, which can be explained by the different va-
lence concerning twice charged atoms of strontium
and magnesium. The data on the diffusion of gallium
can be use for some assumptions about the diffusion
of aluminum, which is similar to gallium by means of
close ionic radius.
4. CONCLUSIONS
1. Diffusion coefficients of cesium, strontium,
sodium and gallium are measured during the leach-
ing in distilled water at 37◦C from matrices on ba-
sis of Ceramicrete in 8 cycles during 3, 16, 29, 67,
76.33, 116, 195 and 335.66 hours for the samples ir-
radiated by electrons and gamma rays to a dose of
100 and 1 MGy, respectively. Diffusion coefficients
of cesium, strontium and sodium changes from units
10−10 cm2/s to 10−16 ... 10−17 cm2/s in the process of
leaching. Gallium diffusion coefficients changes from
units 10−13 cm2/s to 10−16 cm2/s during leaching.
2. Decreasing of weight of ceramics irradiated
by electrons to dose 100 MGy in process of leaching
within 858 hours on 14.6 and 18.5% for samples with
imitator Hanford-1 KE and KW basins sludge with
10%CaSiO3+0,3%H3BO3, accordingly, is discovered.
Decreasing of weight of ceramics in process of leach-
ing within 858 hours, irradiated by bremsstrahlung to
dose 1 MGy, on 19.9 and 21.6% for KW and KE sam-
ples with 0%CaSiO3 and 10%CaSiO3+0,3%H3BO3,
accordingly, is discovered.
3. It is discovered that the sums of ratio of dif-
fusion coefficients of sodium concerning caesium and
strontium are in antagonistic dependence on the cae-
sium and strontium content in a matrices on the basis
of Ceramicrete. The more of the content of strontium
correspond to the more of diffusion coefficient of cae-
sium in a matrix on the basis of Ceramicrete. The
more of the caesium content correspond to the more
diffusion coefficient of strontium in ceramics.
References
1. N.Deneanu, M.Dulama, I. Teoreanu. Magnesium
Phosphates Binding Systems for Immobilizing
Solvent Radioactive Wastes // Rev. Chim. (Bu-
cureoti) 2008, v.59, N.4, p. 430-433.
2. A.S.Wagh. Chemically bonded phosphate ceram-
ics. Amsterdam: ”Elsevier”, 2004, 283 p.
3. S.E.Vinokurov, Yu.M.Kulyako,
O.M. Slyuntchev, et al. Low-temperature im-
mobilization of actinides and other components
of high-level waste in magnesium potassium
phosphate matrices // J. Nucl. Mat. 2009,
v. 385, p. 189–192.
4. N.P.Dikiy, A.N.Dovbnya, Yu.V. Lyashko, et al.
Use of nuclear-physical methods to study the
leaching of metals from granite // Bull. KNU.
Ser. ”Phys., nucl., field”. 2001, N.541, iss. 4(16),
p. 85–88 (In Russian).
5. N.P.Dikiy, A.N.Dovbnya, S.Yu. Sayenko, et al.
Electron linac application for characterization
of radiactive waste // PAST. Ser. ”Nucl.-phys.
res.”(39). 2001, N.3, p. 178–180.
6. N.P.Dikiy, A.N.Dovbnya, Yu.V. Lyashko, et al.
Using Linac to study the diffusion of fission
products and actinides in glass-ceramic matri-
ces // PAST. Ser. ”Nucl.-phys. res.”(39). 2004,
N.1(42), p. 172–174.
7. N.P.Dikiy, S.V.Gabelkov, A.N.Dovbnya, et al.
Application of gamma activation analysis for re-
search of Cs and I diffusion into glassceramic ma-
trix // PAST. Ser. ”Nucl.-phys. res.”(39). 2006,
N.3(47), p. 171–173.
8. V.I. Dubinko, A.N.Dovbnya, S.Yu. Saenko, et
al. Investigation of actinide simulators migra-
tion in granite and tuff irradiated by gamma-
quanta // PAST. Ser. ”Nucl.-phys. res.”(39).
2006, N.3(47), p. 176–178.
9. N.P. V.A.Dikiy, A.N. V.A.Dovbnya, Yu.V.
V.A.Lyashko, et al. Diffusion of sodium, potas-
sium, calcium, manganese, radon in tuff and
clinoptilolite in leaching // JTP 2011, v. 81,
iss. 7, p. 120–123. (in Russian).
10. V.N.Bondarenko, A.V.Goncharov,
V.V.Kuz‘menko, et al. Application of a proton
microprobe to study diffusion profiles of Ce
in synthetic aluminosilicates // PAST. Ser.
”Nucl.-phys. res.” 2005, N.6(45), p. 114-116.
43
ÄÈÔÔÓÇÈß ÖÅÇÈß, ÑÒÐÎÍÖÈß È ÍÀÒÐÈß Â ÌÀÃÍÈÉ ÊÀËÈÉ ÔÎÑÔÀÒÍÎÉ
ÑÈÑÒÅÌÅ
Í.Ï. Äèêèé, A.Í. Äîâáíÿ, Þ.Â. Ëÿøêî, Å.Ï. Ìåäâåäåâà, Ä.Â. Ìåäâåäåâ, Î.À. Ðåïèõîâ,
Ñ.Þ. Ñàåíêî, Â.À. Øêóðîïàòåíêî, P.Â. Òàðàñîâ, È.Ä. Ôåäîðåö, Í.Ï. Õëàïîâà
ßäåðíî-ôèçè÷åñêèå ìåòîäû áûëè èñïîëüçîâàíû äëÿ îïðåäåëåíèÿ êîýôôèöèåíòîâ äèôôóçèè Cs, Na,
Sr è Ga â îáðàçöàõ íà îñíîâå êåðàìèêè Ceramicrete, êîòîðûå ñîäåðæàëè èìèòàòîðû æèäêèõ ðàäèîàê-
òèâíûõ îòõîäîâ ”Õåíôîðä-1”, KW è KE Basin sludge, 10% âîëëàñòîíèòà è 0.3% áîðíîé êèñëîòû. Ïîñëå
îáëó÷åíèÿ èññëåäóåìûõ îáðàçöîâ ýëåêòðîíàìè è òîðìîçíûì èçëó÷åíèåì äî äîçû 100 è 1 ÌÃð, ñîîòâåò-
ñòâåííî, áûëî ïðîâåäåíî âûùåëà÷èâàíèå ïðè òåìïåðàòóðå 37◦C. Çíà÷åíèÿ êîýôôèöèåíòîâ äèôôóçèè
öåçèÿ, ñòðîíöèÿ, íàòðèÿ èçìåíÿëèñü â ïðîöåññå âûùåëà÷èâàíèÿ îò åäèíèö 10−100 ñì2/ñ äî 10−16 ...
10−17 ñì2/ñ, äëÿ ãàëëèÿ � îò åäèíèö 10−13 ñì2/ñ äî 10−16 ñì2/ñ. Îáíàðóæåíî óìåíüøåíèå âåñà êåðàìè-
êè â ïðîöåññå âûùåëà÷èâàíèÿ â òå÷åíèå 858 ÷àñîâ, îáëó÷åííûõ ýëåêòðîíàìè äî äîçû 100 ÌÃp, íà 14,6
è 18,5% ñ èìèòàòîðàìè KE è KW, ñîîòâåòñòâåííî. Îáíàðóæåíî óìåíüøåíèå âåñà êåðàìèêè â ïðîöåññå
âûùåëà÷èâàíèÿ â òå÷åíèå 858 ÷àñà, îáëó÷åííîé ãàììà-êâàíòàìè äî äîçû 1 ÌÃp, íà 19,9 è 21,6% ñ
èìèòàòîðàìè KW è KE, ñîîòâåòñòâåííî. Îáíàðóæåíî, ÷òî ñóììû îòíîøåíèé êîýôôèöèåíòà äèôôó-
çèè íàòðèÿ îòíîñèòåëüíî öåçèÿ è ñòðîíöèÿ íàõîäÿòñÿ â àíòàãîíèñòè÷åñêîé çàâèñèìîñòè îò ñîäåðæàíèÿ
öåçèÿ è ñòðîíöèÿ â ìàòðèöå íà îñíîâå Ceramicrete.
ÄÈÔÓÇIß ÖÅÇIÞ, ÑÒÐÎÍÖIÞ I ÍÀÒÐIÞ Â ÌÀÃÍIÉ ÊÀËIÉ ÔÎÑÔÀÒÍIÉ
ÑÈÑÒÅÌI
Ì.Ï. Äèêèé, A.Ì. Äîâáíÿ, Þ.Â. Ëÿøêî, Î.Ï. Ìåäâåä¹âà, Ä.Â. Ìåäâåä¹â, Î.Î. Ðåïiõîâ,
Ñ.Þ. Ñà¹íêî, Â.À. Øêóðîïàòåíêî, P.Â. Òàðàñîâ, I.Ä. Ôåäîðåöü, Í.Ï. Õëàïîâà
ßäåðíî-ôiçè÷íi ìåòîäè áóëè âèêîðèñòàíi äëÿ âèçíà÷åííÿ êîåôiöi¹íòiâ äèôóçi¨ Cs, Na, Sr i Ga â çðàçêàõ
íà îñíîâi êåðàìiêè Ceramicrete, ÿêi ìiñòèëè iìiòàòîðè ðiäêèõ ðàäiîàêòèâíèõ âiäõîäiâ ”Õåíôîðä-1”, KW
i KE Basin sludge, 10 % âîëëàñòîíiòy i 0.3% áîðíî¨ êèñëîòè. Ïiñëÿ îïðîìiíåííÿ äîñëiäæóâàíèõ çðàçêiâ
åëåêòðîíàìè i ãàëüìiâíèì âèïðîìiíþâàííÿì äî äîçè 100 i 1 ÌÃð, âiäïîâiäíî, áóëî ïðîâåäåíî âèëóãî-
âóâàííÿ ïðè òåìïåðàòóði 37◦C. Çíà÷åííÿ êîåôiöi¹íòiâ äèôóçi¨ öåçiþ, ñòðîíöiþ, íàòðiþ çìiíþâàëèñÿ
â ïðîöåñi âèëóãîâóâàííÿ âiä îäèíèöü 10−10 ñì2/ñ äî 10−16 ... 10−17 ñì2/ñ, äëÿ ãàëiþ � âiä îäèíèöü
10−13 ñì2/ñ äî 10−16 ñì2/ñ. Âèÿâëåíî çìåíøåííÿ âàãè êåðàìiêè â ïðîöåñi âèëóãîâóâàííÿ ïðîòÿãîì
858 ãîäèí, îïðîìiíåíèõ åëåêòðîíàìè äî äîçè 100 ÌÃp, íà 14,6 i 18,5% ç iìiòàòîðàìè KE i KW, âiäïî-
âiäíî. Âèÿâëåíî çìåíøåííÿ âàãè êåðàìiêè â ïðîöåñi âèëóãîâóâàííÿ ïðîòÿãîì 858 ãîäèíè, îïðîìiíåíî¨
ãàìà-êâàíòàìè äî äîçè 1 ÌÃp, íà 19,9 i 21,6% ç iìiòàòîðàìè KW i KE, âiäïîâiäíî. Âèÿâëåíî, ùî ñóìè
âiäíîñèí êîåôiöi¹íòà äèôóçi¨ íàòðiþ äî öåçiþ òà ñòðîíöiþ çíàõîäÿòüñÿ â àíòàãîíiñòè÷íî¨ çàëåæíîñòi
âiä âìiñòó öåçiþ òà ñòðîíöiþ â ìàòðèöi íà îñíîâi Ceramicrete .
44
|