Electron beam transport and energy deposition in heterogeneous assemblies of the hastelloy samples embedded into the molten fluorides mix

By means of the Monte Carlo computer modeling technique the depth dependencies of energy deposition and concentration of radiation induced point defects have been calculated in heterogeneous assemblies of Hastelloy plates embedded into the melt of fluoride salts and irradiated by 8–10 MeV electron b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Вопросы атомной науки и техники
Datum:2005
Hauptverfasser: Bakai, A.S., Bratchenko, M.I., Dyuldya, S.V.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2005
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/80539
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Electron beam transport and energy deposition in heterogeneous assemblies of the hastelloy samples embedded into the molten fluorides mix / A.S. Bakai, M.I. Bratchenko, S.V. Dyuldya // Вопросы атомной науки и техники. — 2005. — № 4. — С. 24-31. — Бібліогр.: 4 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-80539
record_format dspace
spelling Bakai, A.S.
Bratchenko, M.I.
Dyuldya, S.V.
2015-04-18T18:49:06Z
2015-04-18T18:49:06Z
2005
Electron beam transport and energy deposition in heterogeneous assemblies of the hastelloy samples embedded into the molten fluorides mix / A.S. Bakai, M.I. Bratchenko, S.V. Dyuldya // Вопросы атомной науки и техники. — 2005. — № 4. — С. 24-31. — Бібліогр.: 4 назв. — англ.
1562-6016
PACS: 28.41.Qb, 28.50.Ft, 61.80.Fe, 61.80.Ed, 61.82.Bg, 07.05.Tp, 02.70.Uu
https://nasplib.isofts.kiev.ua/handle/123456789/80539
By means of the Monte Carlo computer modeling technique the depth dependencies of energy deposition and concentration of radiation induced point defects have been calculated in heterogeneous assemblies of Hastelloy plates embedded into the melt of fluoride salts and irradiated by 8–10 MeV electron beams. For assemblies of various designs the beam penetration depth dependencies of energy spectra, angular distributions and energy fluxes of electrons and secondary gamma quanta had been studied in great details. As a result of these investigations the optimization of the target assembly design for the imitating experiment at the LUE-10 linac has been accomplished. It has been shown that for the optimized target ampoule design at the experimental conditions (700 hrs long 10 MeV electron irradiation) different surfaces of the Hastelloy plates contacting with molten fluorides are characterized by substantially different values of specific energy deposition (from ~5 keV/atom down to ~60 eV/atom) arising from inelastic ionization energy losses of primary and secondary charged particles. The concentration of point defects produced in elastic collisions of charged particles with target atoms decreases by ~500 times along the assembly thickness. Therefore the single imitating experiment opens up the possibility to study the radiation and corrosion stability of Hastelloy irradiated in the molten fluorides medium in a wide range of doses of electron beam energy deposition and radiation damage of alloy.
Шляхом математичного моделювання методом Монте-Карло розраховані профілі енерговиділення та концентрацій точкових дефектів, що утворюються в гетерогенних збірках тонких платівок сплаву хастелой, занурених у розплав фторидних солей, під опроміненням пучками електронів с енергіями 8…10 МеВ. Детально досліджена еволюція енергетичних спектрів, кутових розподілів та густин потоку енергії електронів та вторинних гамма-квантів з глибиною проникнення пучка у збірки різних конструкцій. На цій основі виконана оптимізація конструкції збірки-мішені для імітаційного експерименту на електроннім прискорювачі ЛПЕ-10. Показано, що для оптимізованої конструкції ампули мішені за умов експерименту (700-годинне опромінювання електронами з енергією 10 МеВ) на різних поверхнях платівок хастелою, що контактують з розплавом, досягаються суттєво різні значення питомого енерговиділення (від ~5 кеВ/атом до ~60 еВ/атом), пов’язаного з непружними іонізаційними втратами енергії первинних та вторинних заряджених частинок. Концентрації точкових дефектів, що утворюються у пружних зіткненнях заряджених частинок з атомами, на товщині збірки спадають приблизно у 500 разів. Таким чином, єдиний імітаційний експеримент відкриває можливість дослідити радіаційну та корозійну стійкість хастелою, опроміненого у середовищі розплавлених фторидів, в широкому інтервалі доз енерговиділення електронного пучка та радіаційного пошкодження сплаву.
Путем математического моделирования методом Монте-Карло рассчитаны профили энерговыделения и концентраций образуемых точечных дефектов в гетерогенных сборках тонких пластинок сплава хастеллой, погруженных в расплав фторидных солей, под облучением пучками электронов с энергиями 8…10 МэВ. Детально исследована эволюция энергетических спектров, угловых распределений и плотностей потока энергии электронов и вторичных гамма-квантов по глубине проникновения пучка в сборки различных конструкций. На этой основе выполнена оптимизация конструкции сборки-мишени для имитационного эксперимента на электронном ускорителе ЛУЭ-10. Показано, что для оптимизированной конструкции ампулы мишени в условиях эксперимента (700-часовое облучение электронами с энергией 10 МэВ) на различных поверхностях пластинок хастеллоя, контактирующих с расплавом, достигаются существенно различные значения удельного энерговыделения (от ~5 кэВ/атом до ~60 эВ/атом), связанного с неупругими ионизационными потерями энергии первичных и вторичных заряженных частиц. Концентрации точечных дефектов, образуемых в упругих столкновениях заряженных частиц с атомами, на толщине сборки спадают приблизительно в 500 раз. Таким образом, единственный имитационный эксперимент открывает возможность исследовать радиационную и коррозионную стойкость хастеллоя, облученного в среде расплавленных фторидов, в широком интервале доз энерговыделения электронного пучка и радиационного повреждения сплава.
The work is partially supported by the STCU Project #294.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Electron beam transport and energy deposition in heterogeneous assemblies of the hastelloy samples embedded into the molten fluorides mix
Транспорт та поглинання енергії електронних пучків в гетерогенних збірках зразків хастелоя, занурених у суміш розплавлених фторидів
Транспорт и поглощение энергии электронных пучков в гетерогенных сборках образцов хастеллоя, погруженных в смесь расплавленных фторидов
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Electron beam transport and energy deposition in heterogeneous assemblies of the hastelloy samples embedded into the molten fluorides mix
spellingShingle Electron beam transport and energy deposition in heterogeneous assemblies of the hastelloy samples embedded into the molten fluorides mix
Bakai, A.S.
Bratchenko, M.I.
Dyuldya, S.V.
title_short Electron beam transport and energy deposition in heterogeneous assemblies of the hastelloy samples embedded into the molten fluorides mix
title_full Electron beam transport and energy deposition in heterogeneous assemblies of the hastelloy samples embedded into the molten fluorides mix
title_fullStr Electron beam transport and energy deposition in heterogeneous assemblies of the hastelloy samples embedded into the molten fluorides mix
title_full_unstemmed Electron beam transport and energy deposition in heterogeneous assemblies of the hastelloy samples embedded into the molten fluorides mix
title_sort electron beam transport and energy deposition in heterogeneous assemblies of the hastelloy samples embedded into the molten fluorides mix
author Bakai, A.S.
Bratchenko, M.I.
Dyuldya, S.V.
author_facet Bakai, A.S.
Bratchenko, M.I.
Dyuldya, S.V.
publishDate 2005
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Транспорт та поглинання енергії електронних пучків в гетерогенних збірках зразків хастелоя, занурених у суміш розплавлених фторидів
Транспорт и поглощение энергии электронных пучков в гетерогенных сборках образцов хастеллоя, погруженных в смесь расплавленных фторидов
description By means of the Monte Carlo computer modeling technique the depth dependencies of energy deposition and concentration of radiation induced point defects have been calculated in heterogeneous assemblies of Hastelloy plates embedded into the melt of fluoride salts and irradiated by 8–10 MeV electron beams. For assemblies of various designs the beam penetration depth dependencies of energy spectra, angular distributions and energy fluxes of electrons and secondary gamma quanta had been studied in great details. As a result of these investigations the optimization of the target assembly design for the imitating experiment at the LUE-10 linac has been accomplished. It has been shown that for the optimized target ampoule design at the experimental conditions (700 hrs long 10 MeV electron irradiation) different surfaces of the Hastelloy plates contacting with molten fluorides are characterized by substantially different values of specific energy deposition (from ~5 keV/atom down to ~60 eV/atom) arising from inelastic ionization energy losses of primary and secondary charged particles. The concentration of point defects produced in elastic collisions of charged particles with target atoms decreases by ~500 times along the assembly thickness. Therefore the single imitating experiment opens up the possibility to study the radiation and corrosion stability of Hastelloy irradiated in the molten fluorides medium in a wide range of doses of electron beam energy deposition and radiation damage of alloy. Шляхом математичного моделювання методом Монте-Карло розраховані профілі енерговиділення та концентрацій точкових дефектів, що утворюються в гетерогенних збірках тонких платівок сплаву хастелой, занурених у розплав фторидних солей, під опроміненням пучками електронів с енергіями 8…10 МеВ. Детально досліджена еволюція енергетичних спектрів, кутових розподілів та густин потоку енергії електронів та вторинних гамма-квантів з глибиною проникнення пучка у збірки різних конструкцій. На цій основі виконана оптимізація конструкції збірки-мішені для імітаційного експерименту на електроннім прискорювачі ЛПЕ-10. Показано, що для оптимізованої конструкції ампули мішені за умов експерименту (700-годинне опромінювання електронами з енергією 10 МеВ) на різних поверхнях платівок хастелою, що контактують з розплавом, досягаються суттєво різні значення питомого енерговиділення (від ~5 кеВ/атом до ~60 еВ/атом), пов’язаного з непружними іонізаційними втратами енергії первинних та вторинних заряджених частинок. Концентрації точкових дефектів, що утворюються у пружних зіткненнях заряджених частинок з атомами, на товщині збірки спадають приблизно у 500 разів. Таким чином, єдиний імітаційний експеримент відкриває можливість дослідити радіаційну та корозійну стійкість хастелою, опроміненого у середовищі розплавлених фторидів, в широкому інтервалі доз енерговиділення електронного пучка та радіаційного пошкодження сплаву. Путем математического моделирования методом Монте-Карло рассчитаны профили энерговыделения и концентраций образуемых точечных дефектов в гетерогенных сборках тонких пластинок сплава хастеллой, погруженных в расплав фторидных солей, под облучением пучками электронов с энергиями 8…10 МэВ. Детально исследована эволюция энергетических спектров, угловых распределений и плотностей потока энергии электронов и вторичных гамма-квантов по глубине проникновения пучка в сборки различных конструкций. На этой основе выполнена оптимизация конструкции сборки-мишени для имитационного эксперимента на электронном ускорителе ЛУЭ-10. Показано, что для оптимизированной конструкции ампулы мишени в условиях эксперимента (700-часовое облучение электронами с энергией 10 МэВ) на различных поверхностях пластинок хастеллоя, контактирующих с расплавом, достигаются существенно различные значения удельного энерговыделения (от ~5 кэВ/атом до ~60 эВ/атом), связанного с неупругими ионизационными потерями энергии первичных и вторичных заряженных частиц. Концентрации точечных дефектов, образуемых в упругих столкновениях заряженных частиц с атомами, на толщине сборки спадают приблизительно в 500 раз. Таким образом, единственный имитационный эксперимент открывает возможность исследовать радиационную и коррозионную стойкость хастеллоя, облученного в среде расплавленных фторидов, в широком интервале доз энерговыделения электронного пучка и радиационного повреждения сплава.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/80539
citation_txt Electron beam transport and energy deposition in heterogeneous assemblies of the hastelloy samples embedded into the molten fluorides mix / A.S. Bakai, M.I. Bratchenko, S.V. Dyuldya // Вопросы атомной науки и техники. — 2005. — № 4. — С. 24-31. — Бібліогр.: 4 назв. — англ.
work_keys_str_mv AT bakaias electronbeamtransportandenergydepositioninheterogeneousassembliesofthehastelloysamplesembeddedintothemoltenfluoridesmix
AT bratchenkomi electronbeamtransportandenergydepositioninheterogeneousassembliesofthehastelloysamplesembeddedintothemoltenfluoridesmix
AT dyuldyasv electronbeamtransportandenergydepositioninheterogeneousassembliesofthehastelloysamplesembeddedintothemoltenfluoridesmix
AT bakaias transporttapoglinannâenergííelektronnihpučkívvgeterogennihzbírkahzrazkívhasteloâzanurenihusumíšrozplavlenihftoridív
AT bratchenkomi transporttapoglinannâenergííelektronnihpučkívvgeterogennihzbírkahzrazkívhasteloâzanurenihusumíšrozplavlenihftoridív
AT dyuldyasv transporttapoglinannâenergííelektronnihpučkívvgeterogennihzbírkahzrazkívhasteloâzanurenihusumíšrozplavlenihftoridív
AT bakaias transportipogloŝenieénergiiélektronnyhpučkovvgeterogennyhsborkahobrazcovhastelloâpogružennyhvsmesʹrasplavlennyhftoridov
AT bratchenkomi transportipogloŝenieénergiiélektronnyhpučkovvgeterogennyhsborkahobrazcovhastelloâpogružennyhvsmesʹrasplavlennyhftoridov
AT dyuldyasv transportipogloŝenieénergiiélektronnyhpučkovvgeterogennyhsborkahobrazcovhastelloâpogružennyhvsmesʹrasplavlennyhftoridov
first_indexed 2025-11-24T11:37:30Z
last_indexed 2025-11-24T11:37:30Z
_version_ 1850845414295601152
fulltext PACS: 28.41.Qb, 28.50.Ft, 61.80.Fe, 61.80.Ed, 61.82.Bg, 07.05.Tp, 02.70.Uu ELECTRON BEAMS TRANSPORT AND ENERGY DEPOSITION IN HETEROGENEOUS ASSEMBLIES OF THE HASTELLOY SAMPLES EMBEDDED INTO THE MOLTEN FLUORIDES MIX O.S. Bakai, M.I. Bratchenko, S.V. Dyuldya National Science Center “Kharkiv Institute for Physics and Technology” Kharkiv, Ukraine, sdul@kipt.kharkov.ua By means of the Monte Carlo computer modeling technique the depth dependencies of energy deposition and concentration of radiation induced point defects have been calculated in heterogeneous assemblies of Hastelloy plates embedded into the melt of fluoride salts and irradiated by 8–10 MeV electron beams. For assemblies of various designs the beam penetration depth de­ pendencies of energy spectra, angular distributions and energy fluxes of electrons and secondary gamma quanta had been studied in great details. As a result of these investigations the optimization of the target assembly design for the imitating experiment at the LUE-10 linac has been accomplished. It has been shown that for the optimized target ampoule design at the experimental conditions (700 hrs long 10 MeV electron irradiation) different surfaces of the Hastelloy plates contacting with molten fluorides are characterized by substantially different values of specific energy deposition (from ~5 keV/atom down to ~60 eV/atom) aris­ ing from inelastic ionization energy losses of primary and secondary charged particles. The concentration of point defects pro­ duced in elastic collisions of charged particles with target atoms decreases by ~500 times along the assembly thickness. There­ fore the single imitating experiment opens up the possibility to study the radiation and corrosion stability of Hastelloy irradiated in the molten fluorides medium in a wide range of doses of electron beam energy deposition and radiation damage of alloy. INTRODUCTION The accelerated electrons irradiation test bench ba­ sed on the 10 MeV LUE-10 linac has been recently cre­ ated in NSC KIPT and the imitating experiments are carried out on this bench in order to study the effects of irradiation on the corrosion stability and mechanical properties of the Hastelloy Nickel-Molybdenum-Chro­ mium alloy in aggressive medium of molten fluorides. These investigations are of great importance for the de­ velopment [1] and the choice of optimal structural mate­ rials for the new-generation accelerator driven transmu­ tation reactors with molten-salt blanket. In imitating experiments the efficient utilization of the electron beam energy stimulates the application of thick heterogeneous targets (assemblies) with total thickness comparable with the range of primary elec­ trons (controlled by the rate of their energy losses). Re­ lativistic electrons intensively lose their energy in sub­ stance due to inelastic collisions and radiative processes of interaction. In turn the secondary bremsstrahlung photons emitted by electrons produce secondary elec­ trons of rather high energies as well as the electron- positron pairs. All these processes give rise to complex radiation fields of charged particles and gamma quanta in matter that become strongly non-uniform at penetra­ tion distances comparable with the range of electron beam. For heterogeneous targets additional complexity of the radiation fields takes place due to certain fine scattering effects near the interfaces of materials. The radiation stimulated chemical reactions are de­ termined by the rate and the density of the radiation en­ ergy deposition in the area of the contact of the material with the melt. The locally deposited energy of some electronvolts is enough to activate a chemical reaction or diffusional replacements of atoms. The surface and bulk radiation damage effects are mainly due to the energy transferred by electrons in ela­ stic collisions with atoms. To induce a displacement of atom the locally transferred energy has to be larger then the Frenkel pair production threshold, Ed ≈ 25…30 eV. Due to the beam slowing down processes the energy locally deposited by radiation essentially depends on the beam penetration depth. Therefore the energy deposited in surface layers of specimens in molten fluorides is dramatically depending on the specimen location and thickness. For this reason the target assembly design can be chosen in such a way that provides irradiation of many specimens with different irradiation rates and dos­ es. If the assembly thickness is comparable with the pri­ mary electrons slowing down range, and the assembly contains N specimens, then we have 2×N surfaces of contact of alloy with the molten salt. Consequently we obtain the possibility to investigate the irradiation im­ pact on the corrosion in wide range of the deposited en­ ergy values. On the other hand, the specimen thickness has to be large enough to get representative information on the irradiation impact on mechanical properties. To elaborate such an optimal experimental setup and to facilitate the adequate interpretation of experimental data the very detailed calculations of the electron beam deposited energy distributions in irradiated assemblies are required. Due to the complexity of the radiation fields in thick heterogeneous targets the interrelated problems of quantitative prediction of the electron beam energy deposition and the optimization of target design are non-trivial and stimulate the application of advanced methods of mathematical modeling for adequate de­ scription of secondary effects of primary electrons transport in matter. In the present work the 8…10 MeV electron beams radiation fields and the associated deposited energy pro­ files in the various designs of containers (ampoules) that hold the irradiated alloy samples embedded into the melt of fluorides are calculated by means of the Monte ________________________________________________________________________________ ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2005. № 4. Серия: Физика радиационных повреждений и радиационное материаловедение (87), с. 24-31. 24 mailto:sdul@kipt.kharkov.ua Carlo computer modeling method. The main objective of these calculations consists in the substantiation of the choice of the ampoule design optimal form the point of view of investigation of the dependence of irradiation effects on the surface and in the bulk of samples on the electron beam energy deposition rate. 1. MODELING SETUP AND METHODS 1.1. EXPERIMENTAL GEOMETRY The overall design and dimensions of ampoules to be used in experiments on the irradiation of the Hastel­ loy samples in liquid medium of molten fluorides are il­ lustrated by the sketch depicted in fig. 1. The ampoule thickness is chosen to be comparable with the slowing down length (the range) of the primary electrons. 30 mm 40 mm 40 m m 10 m m Fig. 1. The general view of target ampoule for irradia­ tion of Hastelloy in the medium of molten salts The leakproof container is a rectangular paral­ lelepiped with the centered cylindrical cavity. In experi­ ment the cavity holds the assembly of thin Hastelloy plates periodically arranged orthogonally to the electron beam axis and is filled by the melt of fluoride salts. The flat single-layered set of 16 such containers in the irradi­ ation chamber is irradiated by the scanning beam of electrons. The accelerator scanning system forms the quasi-parallel broad electron beam and provides uni­ form conditions of irradiation of all target containers. Because of the flat geometry of the target assembly the beam attenuation and energy deposition is essentially depending on the beam penetration depth only. 1.2. MATERIALS The target ampoule is made from the Carbon-Carbon (C-C) composite material with density ρ = 1.5 g/cm3. The molten fluorides liquid mix used in experiments contains (by molar fractions) 50% of ZrF4 and 50% of NaF salts and has the density 3.3 g/cm3. Different versions of the Hastelloy brand Ni/Mo/Cr alloys are slightly varying by elemental composition and density. In the present work, as well as in the imitat­ ing experiments under consideration, the manufactured in NSC KIPT [1] Hastelloy Type A alloy with density 8.9 g/cm3 was investigated (see Table 1). One should note that the variation of chemical com­ position of different sorts of Hastelloy-type alloys have only weak effect on the slowing down of energetic elec­ trons because major contribution to the stopping power is determined by Ni and Mo components that do not vary significantly from one sort to another. Table 1 The elemental composition of the Hastelloy A alloy used in experiments and modeling ELEMENT Z FRACTION at% wgt% Al 13 0.83 1.85 Si 14 0.15 0.32 Ti 22 0.47 0.59 Cr 24 6.70 7.74 Mn 25 0.50 0.55 Fe 26 1.50 1.61 Ni 28 78.15 80.01 Mo 42 11.70 7.32 The total ranges of electrons in the target materials of interest calculated using the continuous slowing down approximation (CSDA) by means of the U.S. NIST supplied reference computer code ESTAR [2] are depicted in fig. 2 as functions of electron energy. 0 2 4 6 8 10 12 14 16 18 20 10-3 10-2 10-1 100 101 C SD A ra ng e, c m Electron energy, MeV C-C Fluoride Hastelloy Fig. 2. Energy dependencies of the continuous slowing down approximation ranges of electrons in the target materials used in experiments and modeling It is clear from this figure that for energies up to 10 MeV the ranges do not exceed 1…2 cm in fluorides and 5…8 mm in Hastelloy. It means that for such ener­ gies the total range of electrons in the target assembly is comparable with the size of containers, and the com­ plete absorption of primary electrons should occur. Due to the rapid decrease of ranges with the decrea­ se of electron energy the ranges of scattered and sec­ ondary electrons that spread in lateral directions of the target assembly are typically much smaller then the ranges of primary electrons. Therefore taking into ac­ count the actual shape and dimensions of the target am­ poule the influence of fringe effects determined by the transversal heterogeneity of the target assembly can be neglected in the first approximation. In this approxima­ tion the problem of the energy deposition calculation can be considered in the one-dimensional geometry that is described only by the strong heterogeneity along the beam penetration depth. ________________________________________________________________________________ ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2005. № 4. Серия: Физика радиационных повреждений и радиационное материаловедение (87), с. 24-31. 25 The results of the ESTAR-based calculations of the stopping power of electrons in the materials under con­ sideration are shown in fig. 3. These calculations testify that for the energy region peculiar for imitating experiments the slowing down of electrons becomes to be influenced by the radiative en­ ergy losses. Consequently the irradiation of ampoules would be accompanied with the noticeable rate of pro­ duction of secondary bremsstrahlung photons having high penetration capability. Thus the radiative energy losses, along with ioniza­ tion ones, have to be taken into account in the energy deposition calculations. 10-2 10-1 100 101 102 10310-2 10-1 100 101 102 collisional radiative total St op pi ng p ow er , M eV ·c m 2 /g Electron energy, MeV Molten Fluorides 10-2 10-1 100 101 102 10310-2 10-1 100 101 102 collisional radiative total St op pi ng p ow er , M eV ·c m 2 /g Electron energy, MeV Hastelloy Fig. 3 Ionization (collisional), radiative and total stop­ ping power (ρ–1·dE/dx) of electrons in the melt of fluo­ ride salts (a) and in the Hastelloy alloy (b) 1.3. METHODS OF CALCULATIONS For one-dimensional geometry the energy Edep de­ posited per one atom of a medium at depth z during the time t of electron irradiation can be estimated using the following expression: ∫ 0 E 0 ϕ e E , z ⋅∣ dE dx E , z ion ∣ dE E γ ¿ϕ γ E γ , z ¿ μen E γ , z  dE γ ¿ Edep  z , t = t n  z  ⋅¿ {¿}¿{} , (1) where n is the atomic concentration of the material at depth z, ϕe and ϕγ are the energy spectra of the electron and photons flux density at this depth, (dE/dx)ion is the ionization stopping power of electrons with energy E for the material at depth z, µen is the linear energy absorp­ tion coefficient of the photons with energy Eγ in this material, E0 is the energy of primary electrons. To estimate the point defects (Frenkel pairs) produc­ tion in elastic collisions of electrons with atoms the fol­ lowing method can be used. The number of displace­ ments per atom (dpa) including the secondary displace­ ments produced by primary knocked atom (PKA) is ex­ pressed by the following formula: C  z , t = t⋅∫ Ed z  E0 ν T , z dT ∫ Ed  z  E0 ϕ e E , z  dσ T ; E , z  dT dE , (2) where dσ/dT is the differential cross-section of the transfer of energy T in elastic collision of electron with atom, ν is the radiation damage function describing the secondary atoms displacements in the collision cascade produced by a PKA with energy T, Ed is the displace­ ment threshold energy. The dependencies of these quan­ tities on depth z emphasize the layered structure of the heterogeneous target. The differential cross-section dσ/dT is derived from the relativistic Mott cross-section of elastic scattering (see, e.g., Ref. 3): dσ T , E  dT =4π Za0 E R mc2  2 ⋅1 −β 2 β4 ⋅ T m T 2 ׿ ¿×[1 −β 2T T m  πα β ⋅T T m − T T m ] , (3) where Z is the target atomic number, a0 and ER are the Bohr atomic radius and the Rydberg energy, m is the electron mass, β = v/c is the ratio of electron velocity v and the speed of light c, α is the fine structure constant, and Tm is the maximal energy of a recoil atom of mass M in elastic collision with an electron of energy E: T m E = 2 E⋅E2 mc2  Mc2 . (4) The radiation damage function for rather low PKA energies peculiar for electron irradiation can be estimat­ ed using the Kinchin-Pease model [3]: ν T ={ 0, 1, T /2 E d , T Ed Ed≤T2 ⋅Ed T 2 ⋅Ed . (5) For multicomponent targets, such as Hastelloy, the calculations according to Eqs. 3 to 5 have take into ac­ count different probabilities of electron impact with each sort of atom (determined by its atomic fraction) as well as the perturbation of the radiation damage func­ tion due to the multicomponent nature of the atomic col­ lision cascade. The calculations according to Eqs. 1 and 2 require the knowledge of the depth dependencies of the elec­ trons and photons flux densities energy spectra. These functions can be calculated analytically only in certain degenerated cases (e.g. for thin target with the thickness much less then the range of primary electrons). Howev­ er such simplifications are not adequate for our case of 26 (a) (b) thick heterogeneous targets and the problem requires the application of numerical methods of calculations, or the computer modeling methods. For calculations we have used the Monte Carlo met­ hod implemented in the specially developed computer code based on the Geant4 toolkit [4] that provides the modeling of radiation transport in heterogeneous multi­ component media with complex geometries. The modeling code takes into account all major phy­ sical processes of electromagnetic interactions. For charged particles (electrons and positrons) they include ionization energy losses, multiple scattering, elastic (Möller or Bhabba) scattering and δ-electrons produc­ tion, the annihilation of positrons and the bremsstrah­ lung photons emission. For secondary photons the pho­ toabsorption, incoherent (Compton) scattering and gam­ ma conversion (e± pairs production) are taken into ac­ count. Hadronic processes such as nuclear reactions ini­ tiated by electron and photons were neglected in our calculations because their contribution into the energy deposition is marginal for the beam energies of interest. The code simulated the electron-photon cascades initiated by primary electrons and calculated the parti­ cles’ and energy fluxes, the particles’ energy and angu­ lar distributions as well as the deposited energies by means of the statistical averaging of the physical quanti­ ties of interest over a large (~107) number of cascades. The histories of primary and secondary particles transport were followed down to the energies at which the ranges of electrons and positrons as well as the mean free-path lengths of photons fall down to 10 µm. At these cut-off energies (that are different for each materi­ al and a sort of particle) the particles trajectories were interrupted and their energy was locally deposited in the material correspondent to the particle’s path endpoint. The heterogeneous layered media were modeled that simulate different versions of the target designs and consist of alternate layers of fluorides melt and Hastel­ loy enclosed by the outer layers of C-C material repre­ senting the container walls. The modeling was carried out for broad parallel beam of electrons. In different calculations the beam en­ ergy varied from 8 to 10 MeV. Angular and energy spreads of primary beam were neglected. However the filtration and scattering of electrons by 0.3 mm thick steel foil at beam entrance was taken into account. The spatial resolution of the modeling results in Hastelloy and molten fluorides was 0.05 mm. The statis­ tical errors of Monte Carlo averaging procedures was typically better then 0.5%. 2. MODELING RESULTS AND DISCUSSION In our calculations the parameters of optimization of the target design were the number, the values of thick­ ness and the positions of Hastelloy plates in the melt as well as the thickness of surrounding C-C walls. 2.1. PRELIMINARY TARGET DESIGN The preliminary estimations have been made for the target design depicted in fig. 4 at primary electrons en­ ergy 8 MeV. According to this preliminary design 1.5 mm thick Hastelloy plates are embedded into the melt so that the width of each layer of fluorides equals to 7.5 mm. For this case the depth dependencies of electrons and pho­ tons energy fluences (calculated per one primary elec­ tron fallen on the unit of target surface area) and the profile of deposited energy are shown in fig. 5. As it is clear from fig. 5,a, the front C-C wall of the target ampoule attenuates the energy flux of electrons very weakly. It is due to the low atomic number and density of Carbon. In contrast, due to the high stopping the layers of the melt, and especially of the Hastelloy alloy, strongly af­ fect the flux. In the design considered primary electrons are practically completely absorbed in the first layer of Hastelloy that is characterized by strong gradients of both energy fluence and deposited energy. carbon, 5 mm fluoride, 7.5 mm Hastelloy, 1.5 mm Fig. 4. The transversal section of the preliminary target design with thick layers of Hastelloy and fluorides melt 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 10-3 10-2 10-1 100 101 8 MeV En er gy fl ue nc e, M eV /c m 2 p er e - /c m 2 Depth, cm e-, total e-, primary photons carbon, 5.0 mm fluoride, 7.5 mm Hastelloy, 1.5 mm 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 10-3 10-2 10-1 100 101 8 MeV D ep os ite d en er gy , M eV /c m 3 p er e - /c m 2 Depth, cm carbon, 5.0 mm fluoride, 7.5 mm Hastelloy, 1.5 mm Fig. 5. Penetration depth dependencies of the energy fluences (a) of electrons and photons (incl. the energy ________________________________________________________________________________ ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2005. № 4. Серия: Физика радиационных повреждений и радиационное материаловедение (87), с. 24-31. 27 (a) (b) fluence of primary electrons) and the deposited energy profile (b) for 8 MeV irradiation of the target of prelim­ inary design (see fig. 4). The quantities are normalized per unit of primary electrons fluence Inside the carbon wall and especially in the first la­ yer of the molten fluorides the considerable production of bremsstrahlung gamma quanta by high-energy prima­ ry electrons takes place. Then the gamma radiation is rather slowly attenuated in the subsequent layers of the target. As a result the energy deposited in the second plate of Hastelloy is completely due to secondary elec­ trons produced mainly by the bremsstrahlung photons incoherent scattering process and weakly depends on the penetration depth within the plate and the melt layer. Thus the preliminary design of fig. 4 is far from op­ timality: in fact it allows to study the dependence of sur­ face irradiation effects on the deposited energy only for two “melt-Hastelloy” interfaces of four available. 2.2. TARGET DESIGN OPTIMIZATION The evident way for target optimization consists in the increase of beam energy, the decrease of thickness of the molten fluorides layers and the increase of the Hastelloy plate number in the target assembly. Basing on the preliminary data of fig. 5 one can con­ clude that the total thickness of the irradiated system “melt-Hastelloy” should not exceed 1 cm. It is fairly consistent with the ranges estimations shown in fig. 2. Within the scope of the overall geometry of the target ampoule (see fig. 1) it can be provided by means of the insertion of the C-C half-liners (shaped as cylindrical segments) into the container’s cavity. This method accompanied by the decreasing of Hastelloy plates thickness down to 0.6 mm and the in­ creasing of their number to 5 is implemented in the tar­ get design depicted in fig. 6. carbon, 5 - 15 mm fluoride, 1.0 mm Hastelloy, 0.6 mm Fig. 6. The section of the target design with Carbon- Carbon insertions and 5 equidistant plates of Hastelloy The depth profiles of energy fluences and deposited energy for 10 MeV irradiation of this target at different thicknesses of beam entrance/exit carbon layers are shown in figs. 7 and 8. 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10-3 10-2 10-1 100 101 Carbon: 5.0 mm 10.0 mm 15.0 mm En er gy fl ue nc e, M eV /c m 2 p er e - /c m 2 Depth, cm 10 MeV fluoride, 1.0 mm Hastelloy, 0.6 mm Electrons a 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.0 0.5 1.0 1.5 2.0 Carbon: 5.0 mm 10.0 mm 15.0 mmEn er gy fl ue nc e, M eV /c m 2 p er e - /c m 2 Depth, cm 10 MeV fluoride, 1.0 mm Hastelloy, 0.6 mm Gamma quanta b Fig. 7. Depth dependencies of normalized energy flu­ ences of electrons (a) (open markers — the contribution of primary electrons) and gamma quanta (b) for differ­ ent thicknesses of C-C layers at entrance and exit of 10 MeV electron beam. The target design of fig. 6 It is clear from fig. 7 that the variation of the thick­ ness of the entrance carbon wall allows to control effi­ ciently the evolution of radiation energy fluxes over the penetration depth. The analysis of data depicted in fig. 8 shows that in­ side the assembly containing five Hastelloy plates the overall range of the depth dependency of deposited en­ ergy is practically the same for all thicknesses of carbon layers under consideration. The significant gradient of the energy deposition is obtained for three (of five) Hastelloy plates while the opposite surfaces of two other plates are in the same conditions of energy deposition. It means that it is sufficient to irradiate three layers of Hastelloy to obtain optimal information on the inter­ faces irradiation effects. The increase of the C-C layer thickness increases the gradient of fluxes in the region of the front Hastelloy layers that are described by the high level of energy de­ position. At the same time the production rate of gamma quanta (that leads to the smoothing of depth dependen­ cies) is decreased because of stronger decrease of pri­ mary electron energy in thicker layers of carbon. 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10-1 100 101 Carbon: 5.0 mm 10.0 mm 15.0 mm D ep os ite d en er gy , M eV /c m 3 p er e - /c m 2 Depth, cm 10 MeV fluoride, 1.0 mm Hastelloy, 0.6 mm 28 Fig. 8. Depth dependencies of deposited energies for different thicknesses of C-C layers. The target design of fig. 6, beam energy 10 MeV Maximal gradients inside the Hastelloy layers take place for 15 mm thick C-C layer. It is due to the overall softening of electron energy spectrum in course of the beam slowing down in carbon. 2.3. OPTIMIZED EXPERIMENTAL DESIGN In accordance with the obtained computer modeling data for actual experiments the target design depicted in fig. 9 has been chosen. This design and the correspon­ dent results of computer modeling of radiation transport and beam energy deposition are discussed below. ca rb on , 1 5. 1 m m ca rb on , 1 5. 1 m m f l u o r i d e , 2 .0 m m H a s te l l o y , 0 .6 m m Fig. 9. The optimized design of target for the experi­ ment: sectional and top views Within the scope of this target design appropriate C- C insertion segments provide the thickness of front and back carbon walls of target container equal to 15.1 mm. Three pairs of the 0.3 mm thick Hastelloy plates are tightly put together (in pairs) forming three 0.6 mm thick Hastelloy layers embedded into the molten salt. The inside surfaces of the Hastelloy specimens are closely contacting but evidently certain small amount of salt can penetrate between them. In our simulation this minor amount is ignored. The chosen thickness and size of the Hastelloy samples is considered to be enough to conduct mechanical tests after irradiation. Three layers of Hastelloy are separated with 2 mm thick layers of melt. Such a thickness also allows to pre­ vent the exhaustion of the molten salt chemical activity during the rather long-term irradiation experiment. For the target design under consideration the depth dependencies of normalized energy fluences and de­ posited energies depicted in fig. 10 show that all layers of Hastelloy are characterized by strong gradients of both flux density and deposited energy. 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 10-3 10-2 10-1 100 101 e-, total e-, primary gamma En er gy fl ue nc e, M eV /c m 2 p er e - /c m 2 Depth, cm 10 MeV carbon, 15.1 mm fluoride, 2.0 mm Hastelloy, 0.6 mm 15 16 17 18 19 20 21 22 23 24 25 10-2 10-1 100 101 D ep os ite d en er gy , M eV /c m 3 p er e - /c m 2 Depth, mm total primary fluoride, 2.0 mm Hastelloy, 0.6 mm 10 MeV Fig. 10. Depth dependencies of the particles normalized fluences (a, incl. primary electrons and produced gam­ mas) and the deposited energy profile (b) for optimized target design of fig. 9. Primary electron energy 10 MeV The overall range of provided deposited energies in the near-surface regions of Hastelloy is about two orders of magnitude. Thus all samples of alloy can be efficient­ ly used for the analysis of the dependency of corrosion and mechanical properties of Hastelloy on the value of deposited energy. In the first two layers of Hastelloy the major contri­ bution into the energy deposition is formed by the pri­ mary electrons. In the last layer (and especially in the last Hastelloy plate) the main yield to the energy deposi­ tion is due to the secondary electrons produced by the Compton scattering of bremsstrahlung photons. The data shown in fig. 11,a testify that the energy spectrum of electrons (that includes both primary and secondary charged particles) considerably changes with the beam penetration depth. Typical energies of elec­ trons are 4…6 MeV inside the first layer of Hastelloy and 3…4 MeV in the second one. In the third layer the electron energies fall down to 2 MeV and lower. The photons energy spectra are typical for incoher­ ent bremsstrahlung (see fig. 11,b) and only weakly de­ pend on penetration depth. In the low energy region the weak annihilation photons peak (Eγ = 511 keV) has been found at modeling that testifies the existence of certain ________________________________________________________________________________ ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2005. № 4. Серия: Физика радиационных повреждений и радиационное материаловедение (87), с. 24-31. 29 (a) (b) contribution of the e± pairs production processes into the energy deposition in the target. 16 18 20 22 24 10 -3 10 -2 10 -1 10 0 10 1 10 2 0 1 2 3 4 5 6 7 8 9 10 E ne rg y fl ue nc e sp ec tr um , c m -2 p er e - /c m 2 E lectron energy , M eVD ep th , m m a 17 18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 9 10 10-2 10-1 100 101 D ep th, m m E ne rg y fl ue nc e di st ri bu t i o n , c m -2 p er e - / c m 2 Pho ton energy , M eV b Fig. 11. Energy spectra of energy fluences of electrons (a) and photons (b) inside the Hastelloy layers 10-5 10-4 10-3 10-2 10-1 100 0° 30° 60° 90° 120° 150° 180°10-5 10-4 10-3 10-2 10-1 100 0 20 40 60 80 100 120 140 160 180 0.0 0.1 0.2 0.3 E le ct ro n an gu la r di st ri bu tio n, r el .u n. layer #1 layer #2 layer #3 Polar angle, deg. Fig. 12. Angular distributions of electrons inside three sequential layers of Hastelloy. Zero polar angle corresponds to the primary beam direction 1.50 1.75 2.00 2.25 2.50 101 102 103 104 D ep os ite d en er gy E de p, e V /a to m Depth, cm 10 MeV 2·1019 e-/cm2 Hastelloy, 0.6 mm fluoride, 2.0 mm 1.50 1.75 2.00 2.25 2.50 10-6 10-5 10-4 10-3 D is pl ac em en ts p er a to m Depth, cm 10 MeV 2·1019 e-/cm2 Hastelloy, 0.6 mm fluoride, 2.0 mm Fig. 13. The penetration depth dependency of the deposited energy (a) and the total number of atomic displace­ ments (b) in Hastelloy at experimental conditions for optimized target design The modeling of angular distributions of electrons in the Hastelloy layers (see fig. 12) has shown that elec­ trons experience considerable scattering in the target. As a result the deposited energy depth dependency is for­ med by complex broad angular distribution of fast char­ ged particles that incorporates the significant fraction of scattered and secondary electrons that propagate in the direction opposite to the primary beam direction. 2.4. DISCUSSION The final data of the Monte Carlo computer model­ ing of the deposited energy depth profile in the “melt- Hastelloy” system at 700 hours long target irradiation by the electron beam with energy 10 MeV and current density 1.25 µA/cm2 are depicted in fig. 13a. The data have been obtained by means of appropriate scaling of normalized data of fig. 10b. The correspondent Hastel­ loy radiation damage profile calculated at the displace­ ment threshold energy Ed = 25 eV for all sorts of atoms in the alloy is presented in fig. 13,b. For interface regions of all Hastelloy plates the de­ posited energies and the atomic concentrations of point defects are summarized in Table 2 both in absolute (per atom) and relative units. Table 2 Deposited energies in the interface (near-surface) regions of the Hastelloy plates and the melt SAMPLE SAMPLE SURFACE MATERIAL DEPTH DEPOSITED ENERGY POINT DEFECTS cm eV/atom percentage dpa percentage 30 (a) (b) fluoride 1.7075 2221.52 1 1-1 1-2 2 2-1 2-2 Hastelloy 1.7125 5066.72 100.0 100.0 2.12×10–3 100.0 100.0 1.7375 4906.46 96.84 96.84 2.01×10–3 94.44 94.44 1.7425 4815.29 95.04 95.04 1.95×10–3 91.94 91.94 1.7675 4208.23 83.06 83.06 1.62×10–3 76.20 76.20 fluoride 1.7725 1794.76 1.9675 1010.82 3 3-1 3-2 4 4-1 4-2 Hastelloy 1.9725 2347.23 46.33 100.0 7.00×10–4 32.96 100.0 1.9975 1698.40 33.52 72.36 4.80×10–4 22.59 68.54 2.0025 1563.33 30.85 66.60 4.33×10–4 20.37 61.80 2.0275 969.88 19.14 41.32 2.44×10–4 11.48 34.83 fluoride 2.0325 375.17 2.2275 90.93 5 5-1 5-2 6 6-1 6-2 Hastelloy 2.2325 214.55 4.23 100.0 2.75×10–5 1.30 100.0 2.2575 107.01 2.11 49.88 1.06×10–5 0.50 38.64 2.2625 95.04 1.88 44.30 8.83×10–6 0.42 32.07 2.2875 63.82 1.26 29.74 4.42×10–6 0.21 16.07 fluoride 2.2925 24.39 The accelerator irradiation up to high electron fluen­ ces leads to the significant values of specific deposited energies that in average amounts to 2 keV per atom. At such levels of deposited energy one can expect the con­ siderable effects of irradiation on the corrosion process­ es at the contact of Hastelloy with molten fluoride salts and on the degradation of mechanical properties of alloy under irradiation in aggressive environment. At the same time one should mention that the level of the Hastelloy radiation damage (see fig. 13b) for electron irradiation is considerably lower then that for neutron irradiation in reactor. However its depth depen­ dence is even more strong then that of deposited energy: it decreases by 500 times from the front surface of the first specimen to the back surface of the last Hastelloy plate. Thus the chosen optimal design of target provides the capability to clarify the dose dependencies of irradi­ ation effects of interest using the results of single imitat­ ing experiment because the surface layers of irradiated samples are described by the considerably different rates of energy deposition and radiation damage. CONCLUSIONS The detailed Monte Carlo modeling performed in the present work has allowed to select from the variety of possible versions the optimal design of the target for im­ itating experiments on the investigation of corrosion and mechanical properties of Hastelloy contacting with molten fluorides under electron irradiation. Within the scope of the experimental geometry proposed basing on the modeling results the maximal variability of energy deposition on different interfaces of Hastelloy and fluo­ rides is obtained that provides the information on the dose dependencies of the corrosion stability and the me­ chanical properties degradation. The modeling of such complex multicomponent het­ erogeneous system that is presented by the irradiated as­ semblies taking into account all valuable physical pro­ cesses that determine the relativistic electrons energy deposition in substance has been provided both the ob­ tainment of important information on the kinetics of de­ velopment of electron-photon processes in this system and the quantitative calculation data on depth profiles of energy deposition necessary for adequate analysis of the results of imitating experiments. The work is partially supported by the STCU Project #294. REFERENCES 1.V.M. Azhazha, Yu.P. Bobrov, O.F. Vanzha, P.N. V’yugov et al. The development of alloy for fuel con­ tour of molten-salt reactors //Journal of Kharkiv nation­ al University. Ser. “Nuclei, Particles, Fields”. 2004. N 619, Issue 1 (23), p. 87–94. 2.M.J. Berger. ESTAR, PSTAR, ASTAR — a PC pack­ age for calculating stopping powers and ranges of elec­ trons, protons and helium ions. NIST Report NISTIR- 4999, 1993. (IAEA-NDS-144, 1993). 3.M.W. Thompson. Defects and Radiation Damage in Metals. Cambrige at the University Press. 1969. 4.S. Agostinelli, J. Allison, K. Amako, J. Apostolakis et al. Geant 4 — a simulation toolkit //Nuclear Instruments and Methods in Physics Research. Section A: Accelera­ tors, Spectrometers, Detectors and Associated Equip­ ment. 2003. v. 22, #3, p. 250–303. ТРАНСПОРТ И ПОГЛОЩЕНИЕ ЭНЕРГИИ ЭЛЕКТРОННЫХ ПУЧКОВ В ГЕТЕРОГЕННЫХ СБОРКАХ ОБРАЗЦОВ ХАСТЕЛЛОЯ, ПОГРУЖЕННЫХ В СМЕСЬ РАСПЛАВЛЕННЫХ ФТОРИДОВ А.С. Бакай, М.И. Братченко, С.В. Дюльдя Путем математического моделирования методом Монте-Карло рассчитаны профили энерговыделения и концентраций образуемых точечных дефектов в гетерогенных сборках тонких пластинок сплава хастеллой, погруженных в расплав фторидных солей, под облуче­ нием пучками электронов с энергиями 8…10 МэВ. Детально исследована эволюция энергетических спектров, угловых распределений и плотностей потока энергии электронов и вторичных гамма-квантов по глубине проникновения пучка в сборки различных конструкций. ________________________________________________________________________________ ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2005. № 4. Серия: Физика радиационных повреждений и радиационное материаловедение (87), с. 24-31. 31 На этой основе выполнена оптимизация конструкции сборки-мишени для имитационного эксперимента на электронном ускорителе ЛУЭ-10. Показано, что для оптимизированной конструкции ампулы мишени в условиях эксперимента (700-часовое облучение электро­ нами с энергией 10 МэВ) на различных поверхностях пластинок хастеллоя, контактирующих с расплавом, достигаются существенно различные значения удельного энерговыделения (от ~5 кэВ/атом до ~60 эВ/атом), связанного с неупругими ионизационными потерями энергии первичных и вторичных заряженных частиц. Концентрации точечных дефектов, образуемых в упругих столкновениях заря­ женных частиц с атомами, на толщине сборки спадают приблизительно в 500 раз. Таким образом, единственный имитационный экспе­ римент открывает возможность исследовать радиационную и коррозионную стойкость хастеллоя, облученного в среде расплавленных фторидов, в широком интервале доз энерговыделения электронного пучка и радиационного повреждения сплава. ТРАНСПОРТ ТА ПОГЛИНАННЯ ЕНЕРГІЇ ЕЛЕКТРОННИХ ПУЧКІВ В ГЕТЕРОГЕННИХ ЗБІРКАХ ЗРАЗКІВ ХАСТЕЛОЯ, ЗАНУРЕНИХ У СУМІШ РОЗПЛАВЛЕНИХ ФТОРИДІВ О.С. Бакай, М.І. Братченко, С.В. Дюльдя Шляхом математичного моделювання методом Монте-Карло розраховані профілі енерговиділення та концентрацій точкових дефе­ ктів, що утворюються в гетерогенних збірках тонких платівок сплаву хастелой, занурених у розплав фторидних солей, під опромінен­ ням пучками електронів с енергіями 8…10 МеВ. Детально досліджена еволюція енергетичних спектрів, кутових розподілів та густин потоку енергії електронів та вторинних гамма-квантів з глибиною проникнення пучка у збірки різних конструкцій. На цій основі ви­ конана оптимізація конструкції збірки-мішені для імітаційного експерименту на електроннім прискорювачі ЛПЕ-10. Показано, що для оптимізованої конструкції ампули мішені за умов експерименту (700-годинне опромінювання електронами з енергією 10 МеВ) на рі­ зних поверхнях платівок хастелою, що контактують з розплавом, досягаються суттєво різні значення питомого енерговиділення (від ~5 кеВ/атом до ~60 еВ/атом), пов’язаного з непружними іонізаційними втратами енергії первинних та вторинних заряджених частинок. Концентрації точкових дефектів, що утворюються у пружних зіткненнях заряджених частинок з атомами, на товщині збірки спадають приблизно у 500 разів. Таким чином, єдиний імітаційний експеримент відкриває можливість дослідити радіаційну та корозійну стійкість хастелою, опроміненого у середовищі розплавлених фторидів, в широкому інтервалі доз енерговиділення електронного пучка та радіаційного пошкодження сплаву. 32